Documentation

Mathlib.MeasureTheory.Measure.Stieltjes

Stieltjes measures on the real line #

Consider a function f : ℝ → ℝ which is monotone and right-continuous. Then one can define a corresponding measure, giving mass f b - f a to the interval (a, b].

Main definitions #

Basic properties of Stieltjes functions #

Bundled monotone right-continuous real functions, used to construct Stieltjes measures.

Instances For
    theorem StieltjesFunction.ext {f g : StieltjesFunction} (h : ∀ (x : ), f x = g x) :
    f = g
    theorem StieltjesFunction.ext_iff {f g : StieltjesFunction} :
    f = g ∀ (x : ), f x = g x
    theorem StieltjesFunction.iInf_Ioi_eq (f : StieltjesFunction) (x : ) :
    ⨅ (r : (Set.Ioi x)), f r = f x
    theorem StieltjesFunction.iInf_rat_gt_eq (f : StieltjesFunction) (x : ) :
    ⨅ (r : { r' : // x < r' }), f r = f x

    The identity of as a Stieltjes function, used to construct Lebesgue measure.

    Equations
      Instances For

        Constant functions are Stieltjes function.

        Equations
          Instances For

            The sum of two Stieltjes functions is a Stieltjes function.

            Equations
              Instances For
                @[simp]
                theorem StieltjesFunction.zero_apply (x : ) :
                0 x = 0
                @[simp]
                theorem StieltjesFunction.add_apply (f g : StieltjesFunction) (x : ) :
                ↑(f + g) x = f x + g x
                noncomputable def Monotone.stieltjesFunction {f : } (hf : Monotone f) :

                If a function f : ℝ → ℝ is monotone, then the function mapping x to the right limit of f at x is a Stieltjes function, i.e., it is monotone and right-continuous.

                Equations
                  Instances For

                    The outer measure associated to a Stieltjes function #

                    Length of an interval. This is the largest monotone function which correctly measures all intervals.

                    Equations
                      Instances For
                        @[simp]
                        theorem StieltjesFunction.length_Ioc (f : StieltjesFunction) (a b : ) :
                        f.length (Set.Ioc a b) = ENNReal.ofReal (f b - f a)
                        theorem StieltjesFunction.length_mono (f : StieltjesFunction) {s₁ s₂ : Set } (h : s₁ s₂) :
                        f.length s₁ f.length s₂

                        The Stieltjes outer measure associated to a Stieltjes function.

                        Equations
                          Instances For
                            theorem StieltjesFunction.length_subadditive_Icc_Ioo (f : StieltjesFunction) {a b : } {c d : } (ss : Set.Icc a b ⋃ (i : ), Set.Ioo (c i) (d i)) :
                            ENNReal.ofReal (f b - f a) ∑' (i : ), ENNReal.ofReal (f (d i) - f (c i))

                            If a compact interval [a, b] is covered by a union of open interval (c i, d i), then f b - f a ≤ ∑ f (d i) - f (c i). This is an auxiliary technical statement to prove the same statement for half-open intervals, the point of the current statement being that one can use compactness to reduce it to a finite sum, and argue by induction on the size of the covering set.

                            @[simp]
                            theorem StieltjesFunction.outer_Ioc (f : StieltjesFunction) (a b : ) :
                            f.outer (Set.Ioc a b) = ENNReal.ofReal (f b - f a)

                            The measure associated to a Stieltjes function #

                            @[irreducible]

                            The measure associated to a Stieltjes function, giving mass f b - f a to the interval (a, b].

                            Equations
                              Instances For
                                theorem StieltjesFunction.measure_def (f : StieltjesFunction) :
                                f.measure = let __OuterMeasure := f.outer; { toOuterMeasure := __OuterMeasure, m_iUnion := , trim_le := }
                                @[simp]
                                theorem StieltjesFunction.measure_Ioc (f : StieltjesFunction) (a b : ) :
                                f.measure (Set.Ioc a b) = ENNReal.ofReal (f b - f a)
                                theorem StieltjesFunction.eq_of_measure_of_eq (f g : StieltjesFunction) {y : } (hfg : f.measure = g.measure) (hy : f y = g y) :
                                f = g