Documentation

Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs

Eisenstein Series #

Main definitions #

References #

def EisensteinSeries.gammaSet (N : ) (a : Fin 2ZMod N) :
Set (Fin 2)

The set of pairs of coprime integers congruent to a mod N.

Equations
    Instances For
      theorem EisensteinSeries.gammaSet_one_eq (a a' : Fin 2ZMod 1) :

      For level N = 1, the gamma sets are all equal.

      def EisensteinSeries.gammaSet_one_equiv (a a' : Fin 2ZMod 1) :
      (gammaSet 1 a) (gammaSet 1 a')

      For level N = 1, the gamma sets are all equivalent; this is the equivalence.

      Equations
        Instances For

          Right-multiplying by γ ∈ SL(2, ℤ) sends gammaSet N a to gammaSet N (a ᵥ* γ).

          The bijection between GammaSets given by multiplying by an element of SL(2, ℤ).

          Equations
            Instances For

              The function on (Fin 2 → ℤ) whose sum defines an Eisenstein series.

              Equations
                Instances For
                  def eisensteinSeries {N : } (a : Fin 2ZMod N) (k : ) (z : UpperHalfPlane) :

                  An Eisenstein series of weight k and level Γ(N), with congruence condition a.

                  Equations
                    Instances For

                      The SlashInvariantForm defined by an Eisenstein series of weight k : ℤ, level Γ(N), and congruence condition given by a : Fin 2 → ZMod N.

                      Equations
                        Instances For