Documentation

Mathlib.NumberTheory.NumberField.CanonicalEmbedding.PolarCoord

Polar coordinate change of variables for the mixed space of a number field #

We define two polar coordinate changes of variables for the mixed space ℝ^r₁ × ℂ^r₂ associated to a number field K of signature (r₁, r₂). The first one is mixedEmbedding.polarCoord and has value in realMixedSpace K defined as ℝ^r₁ × (ℝ ⨯ ℝ)^r₂, the second is mixedEmbedding.polarSpaceCoord and has value in polarSpace K defined as ℝ^(r₁+r₂) × ℝ^r₂.

The change of variables with the polarSpace is useful to compute the volume of subsets of the mixed space with enough symmetries, see volume_eq_two_pi_pow_mul_integral and volume_eq_two_pow_mul_two_pi_pow_mul_integral

Main definitions and results #

@[reducible, inline]

The real mixed space ℝ^r₁ × (ℝ × ℝ)^r₂ with (r₁, r₂) the signature of K.

Equations
    Instances For

      The natural homeomorphism between the mixed space ℝ^r₁ × ℂ^r₂ and the real mixed space ℝ^r₁ × (ℝ × ℝ)^r₂.

      Equations
        Instances For

          The polar coordinate partial homeomorphism of ℝ^r₁ × (ℝ × ℝ)^r₂ defined as the identity on the first component and mapping (rᵢ cos θᵢ, rᵢ sin θᵢ)ᵢ to (rᵢ, θᵢ)ᵢ on the second component.

          Equations
            Instances For
              @[simp]
              theorem NumberField.mixedEmbedding.polarCoordReal_apply (K : Type u_1) [Field K] [NumberField K] (p : ({ w : InfinitePlace K // w.IsReal }) × ({ w : InfinitePlace K // w.IsComplex } × )) :
              (polarCoordReal K) p = (p.1, Pi.map (fun (i : { w : InfinitePlace K // w.IsComplex }) => polarCoord) p.2)

              The polar coordinate partial homeomorphism between the mixed space ℝ^r₁ × ℂ^r₂ and ℝ^r₁ × (ℝ × ℝ)^r₂ defined as the identity on the first component and mapping (zᵢ)ᵢ to (‖zᵢ‖, Arg zᵢ)ᵢ on the second component.

              Equations
                Instances For
                  @[reducible, inline]

                  The space ℝ^(r₁+r₂) × ℝ^r₂, it is homeomorph to the realMixedSpace, see homeoRealMixedSpacePolarSpace.

                  Equations
                    Instances For

                      The measurable equivalence between the realMixedSpace and the polarSpace. It is actually an homeomorphism, see homeoRealMixedSpacePolarSpace, but defining it in this way makes it easier to prove that it is volume preserving, see volume_preserving_homeoRealMixedSpacePolarSpace.

                      Equations
                        Instances For

                          The homeomorphism between the realMixedSpace and the polarSpace.

                          Equations
                            Instances For
                              theorem NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply (K : Type u_1) [Field K] (x : realMixedSpace K) :
                              (homeoRealMixedSpacePolarSpace K) x = (fun (w : InfinitePlace K) => if hw : w.IsReal then x.1 w, hw else (x.2 w, ).1, fun (w : { w : InfinitePlace K // w.IsComplex }) => (x.2 w).2)
                              @[simp]

                              The polar coordinate partial homeomorphism between the mixed space ℝ^r₁ × ℂ^r₂ and the polar space ℝ^(r₁ + r₂) × ℝ^r₂ defined by sending x to x w or ‖x w‖ depending on whether w is real or complex for the first component, and to Arg (x w), w complex, for the second component.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem NumberField.mixedEmbedding.polarSpaceCoord_symm_apply (K : Type u_1) [Field K] [NumberField K] (a✝ : polarSpace K) :
                                  (polarSpaceCoord K).symm a✝ = (fun (w : { w : InfinitePlace K // w.IsReal }) => a✝.1 w, Pi.map (fun (i : { w : InfinitePlace K // w.IsComplex }) => Complex.polarCoord.symm) fun (w : { w : InfinitePlace K // w.IsComplex }) => (a✝.1 w, a✝.2 w))

                                  If the measurable set A is norm-stable at complex places in the sense that normAtComplexPlaces⁻¹ (normAtComplexPlaces '' A) = A, then its volume can be computed via an integral over normAtComplexPlaces '' A.

                                  If the measurable set A is norm-stable in the sense that normAtAllPlaces⁻¹ (normAtAllPlaces '' A) = A, then its volume can be computed via an integral over normAtAllPlaces '' A.