p-adic integers #
This file defines the p
-adic integers ℤ_[p]
as the subtype of ℚ_[p]
with norm ≤ 1
.
We show that ℤ_[p]
- is complete,
- is nonarchimedean,
- is a normed ring,
- is a local ring, and
- is a discrete valuation ring.
The relation between ℤ_[p]
and ZMod p
is established in another file.
Important definitions #
PadicInt
: the type ofp
-adic integers
Notation #
We introduce the notation ℤ_[p]
for the p
-adic integers.
Implementation notes #
Much, but not all, of this file assumes that p
is prime. This assumption is inferred automatically
by taking [Fact p.Prime]
as a type class argument.
Coercions into ℤ_[p]
are set up to work with the norm_cast
tactic.
References #
- [F. Q. Gouvêa, p-adic numbers][gouvea1997]
- [R. Y. Lewis, A formal proof of Hensel's lemma over the p-adic integers][lewis2019]
- https://en.wikipedia.org/wiki/P-adic_number
Tags #
p-adic, p adic, padic, p-adic integer
Ring structure and coercion to ℚ_[p]
#
Equations
Equations
Norm #
Valuation on ℤ_[p]
#
Units of ℤ_[p]
#
Various characterizations of open unit balls #
Discrete valuation ring #
@[deprecated PadicInt.p_nonunit (since := "2025-07-27")]
Alias of PadicInt.p_nonunit
.