Documentation

Mathlib.NumberTheory.PellMatiyasevic

Pell's equation and Matiyasevic's theorem #

This file solves Pell's equation, i.e. integer solutions to x ^ 2 - d * y ^ 2 = 1 in the special case that d = a ^ 2 - 1. This is then applied to prove Matiyasevic's theorem that the power function is Diophantine, which is the last key ingredient in the solution to Hilbert's tenth problem. For the definition of Diophantine function, see NumberTheory.Dioph.

For results on Pell's equation for arbitrary (positive, non-square) d, see NumberTheory.Pell.

Main definition #

Main statements #

Implementation notes #

The proof of Matiyasevic's theorem doesn't follow Matiyasevic's original account of using Fibonacci numbers but instead Davis' variant of using solutions to Pell's equation.

References #

Tags #

Pell's equation, Matiyasevic's theorem, Hilbert's tenth problem

def Pell.IsPell {d : } :

The property of being a solution to the Pell equation, expressed as a property of elements of ℤ√d.

Equations
    Instances For
      theorem Pell.isPell_norm {d : } {b : ℤ√d} :
      IsPell b b * star b = 1
      theorem Pell.isPell_mul {d : } {b c : ℤ√d} (hb : IsPell b) (hc : IsPell c) :
      IsPell (b * c)
      theorem Pell.isPell_star {d : } {b : ℤ√d} :
      @[simp]
      theorem Pell.d_pos {a : } (a1 : 1 < a) :
      def Pell.pell {a : } (a1 : 1 < a) :

      The Pell sequences, i.e. the sequence of integer solutions to x ^ 2 - d * y ^ 2 = 1, where d = a ^ 2 - 1, defined together in mutual recursion.

      Equations
        Instances For
          def Pell.xn {a : } (a1 : 1 < a) (n : ) :

          The Pell x sequence.

          Equations
            Instances For
              def Pell.yn {a : } (a1 : 1 < a) (n : ) :

              The Pell y sequence.

              Equations
                Instances For
                  @[simp]
                  theorem Pell.pell_val {a : } (a1 : 1 < a) (n : ) :
                  pell a1 n = (xn a1 n, yn a1 n)
                  @[simp]
                  theorem Pell.xn_zero {a : } (a1 : 1 < a) :
                  xn a1 0 = 1
                  @[simp]
                  theorem Pell.yn_zero {a : } (a1 : 1 < a) :
                  yn a1 0 = 0
                  @[simp]
                  theorem Pell.xn_succ {a : } (a1 : 1 < a) (n : ) :
                  xn a1 (n + 1) = xn a1 n * a + Pell.d✝ a1 * yn a1 n
                  @[simp]
                  theorem Pell.yn_succ {a : } (a1 : 1 < a) (n : ) :
                  yn a1 (n + 1) = xn a1 n + yn a1 n * a
                  theorem Pell.xn_one {a : } (a1 : 1 < a) :
                  xn a1 1 = a
                  theorem Pell.yn_one {a : } (a1 : 1 < a) :
                  yn a1 1 = 1
                  def Pell.xz {a : } (a1 : 1 < a) (n : ) :

                  The Pell x sequence, considered as an integer sequence.

                  Equations
                    Instances For
                      def Pell.yz {a : } (a1 : 1 < a) (n : ) :

                      The Pell y sequence, considered as an integer sequence.

                      Equations
                        Instances For
                          def Pell.az (a : ) :

                          The element a such that d = a ^ 2 - 1, considered as an integer.

                          Equations
                            Instances For
                              theorem Pell.asq_pos {a : } (a1 : 1 < a) :
                              0 < a * a
                              theorem Pell.dz_val {a : } (a1 : 1 < a) :
                              (Pell.d✝ a1) = az a * az a - 1
                              @[simp]
                              theorem Pell.xz_succ {a : } (a1 : 1 < a) (n : ) :
                              xz a1 (n + 1) = xz a1 n * az a + (Pell.d✝ a1) * yz a1 n
                              @[simp]
                              theorem Pell.yz_succ {a : } (a1 : 1 < a) (n : ) :
                              yz a1 (n + 1) = xz a1 n + yz a1 n * az a
                              def Pell.pellZd {a : } (a1 : 1 < a) (n : ) :

                              The Pell sequence can also be viewed as an element of ℤ√d

                              Equations
                                Instances For
                                  @[simp]
                                  theorem Pell.pellZd_re {a : } (a1 : 1 < a) (n : ) :
                                  (pellZd a1 n).re = (xn a1 n)
                                  @[simp]
                                  theorem Pell.pellZd_im {a : } (a1 : 1 < a) (n : ) :
                                  (pellZd a1 n).im = (yn a1 n)
                                  theorem Pell.isPell_nat {a : } (a1 : 1 < a) {x y : } :
                                  IsPell { re := x, im := y } x * x - Pell.d✝ a1 * y * y = 1
                                  @[simp]
                                  theorem Pell.pellZd_succ {a : } (a1 : 1 < a) (n : ) :
                                  pellZd a1 (n + 1) = pellZd a1 n * { re := a, im := 1 }
                                  theorem Pell.isPell_one {a : } (a1 : 1 < a) :
                                  IsPell { re := a, im := 1 }
                                  theorem Pell.isPell_pellZd {a : } (a1 : 1 < a) (n : ) :
                                  IsPell (pellZd a1 n)
                                  @[simp]
                                  theorem Pell.pell_eqz {a : } (a1 : 1 < a) (n : ) :
                                  xz a1 n * xz a1 n - (Pell.d✝ a1) * yz a1 n * yz a1 n = 1
                                  @[simp]
                                  theorem Pell.pell_eq {a : } (a1 : 1 < a) (n : ) :
                                  xn a1 n * xn a1 n - Pell.d✝ a1 * yn a1 n * yn a1 n = 1
                                  instance Pell.dnsq {a : } (a1 : 1 < a) :
                                  theorem Pell.xn_ge_a_pow {a : } (a1 : 1 < a) (n : ) :
                                  a ^ n xn a1 n
                                  theorem Pell.n_lt_xn {a : } (a1 : 1 < a) (n : ) :
                                  n < xn a1 n
                                  theorem Pell.x_pos {a : } (a1 : 1 < a) (n : ) :
                                  0 < xn a1 n
                                  theorem Pell.eq_pell_lem {a : } (a1 : 1 < a) (n : ) (b : ℤ√(Pell.d✝ a1)) :
                                  1 bIsPell bb pellZd a1 n∃ (n : ), b = pellZd a1 n
                                  theorem Pell.eq_pellZd {a : } (a1 : 1 < a) (b : ℤ√(Pell.d✝ a1)) (b1 : 1 b) (hp : IsPell b) :
                                  ∃ (n : ), b = pellZd a1 n
                                  theorem Pell.eq_pell {a : } (a1 : 1 < a) {x y : } (hp : x * x - Pell.d✝ a1 * y * y = 1) :
                                  ∃ (n : ), x = xn a1 n y = yn a1 n

                                  Every solution to Pell's equation is recursively obtained from the initial solution (1,0) using the recursion pell.

                                  theorem Pell.pellZd_add {a : } (a1 : 1 < a) (m n : ) :
                                  pellZd a1 (m + n) = pellZd a1 m * pellZd a1 n
                                  theorem Pell.xn_add {a : } (a1 : 1 < a) (m n : ) :
                                  xn a1 (m + n) = xn a1 m * xn a1 n + Pell.d✝ a1 * yn a1 m * yn a1 n
                                  theorem Pell.yn_add {a : } (a1 : 1 < a) (m n : ) :
                                  yn a1 (m + n) = xn a1 m * yn a1 n + yn a1 m * xn a1 n
                                  theorem Pell.pellZd_sub {a : } (a1 : 1 < a) {m n : } (h : n m) :
                                  pellZd a1 (m - n) = pellZd a1 m * star (pellZd a1 n)
                                  theorem Pell.xz_sub {a : } (a1 : 1 < a) {m n : } (h : n m) :
                                  xz a1 (m - n) = xz a1 m * xz a1 n - (Pell.d✝ a1) * yz a1 m * yz a1 n
                                  theorem Pell.yz_sub {a : } (a1 : 1 < a) {m n : } (h : n m) :
                                  yz a1 (m - n) = xz a1 n * yz a1 m - xz a1 m * yz a1 n
                                  theorem Pell.xy_coprime {a : } (a1 : 1 < a) (n : ) :
                                  (xn a1 n).Coprime (yn a1 n)
                                  theorem Pell.strictMono_y {a : } (a1 : 1 < a) :
                                  theorem Pell.strictMono_x {a : } (a1 : 1 < a) :
                                  theorem Pell.yn_ge_n {a : } (a1 : 1 < a) (n : ) :
                                  n yn a1 n
                                  theorem Pell.y_mul_dvd {a : } (a1 : 1 < a) (n k : ) :
                                  yn a1 n yn a1 (n * k)
                                  theorem Pell.y_dvd_iff {a : } (a1 : 1 < a) (m n : ) :
                                  yn a1 m yn a1 n m n
                                  theorem Pell.xy_modEq_yn {a : } (a1 : 1 < a) (n k : ) :
                                  xn a1 (n * k) xn a1 n ^ k [MOD yn a1 n ^ 2] yn a1 (n * k) k * xn a1 n ^ (k - 1) * yn a1 n [MOD yn a1 n ^ 3]
                                  theorem Pell.ysq_dvd_yy {a : } (a1 : 1 < a) (n : ) :
                                  yn a1 n * yn a1 n yn a1 (n * yn a1 n)
                                  theorem Pell.dvd_of_ysq_dvd {a : } (a1 : 1 < a) {n t : } (h : yn a1 n * yn a1 n yn a1 t) :
                                  yn a1 n t
                                  theorem Pell.pellZd_succ_succ {a : } (a1 : 1 < a) (n : ) :
                                  pellZd a1 (n + 2) + pellZd a1 n = ↑(2 * a) * pellZd a1 (n + 1)
                                  theorem Pell.xy_succ_succ {a : } (a1 : 1 < a) (n : ) :
                                  xn a1 (n + 2) + xn a1 n = 2 * a * xn a1 (n + 1) yn a1 (n + 2) + yn a1 n = 2 * a * yn a1 (n + 1)
                                  theorem Pell.xn_succ_succ {a : } (a1 : 1 < a) (n : ) :
                                  xn a1 (n + 2) + xn a1 n = 2 * a * xn a1 (n + 1)
                                  theorem Pell.yn_succ_succ {a : } (a1 : 1 < a) (n : ) :
                                  yn a1 (n + 2) + yn a1 n = 2 * a * yn a1 (n + 1)
                                  theorem Pell.xz_succ_succ {a : } (a1 : 1 < a) (n : ) :
                                  xz a1 (n + 2) = ↑(2 * a) * xz a1 (n + 1) - xz a1 n
                                  theorem Pell.yz_succ_succ {a : } (a1 : 1 < a) (n : ) :
                                  yz a1 (n + 2) = ↑(2 * a) * yz a1 (n + 1) - yz a1 n
                                  theorem Pell.yn_modEq_a_sub_one {a : } (a1 : 1 < a) (n : ) :
                                  yn a1 n n [MOD a - 1]
                                  theorem Pell.yn_modEq_two {a : } (a1 : 1 < a) (n : ) :
                                  yn a1 n n [MOD 2]
                                  theorem Pell.x_sub_y_dvd_pow_lem (y2 y1 y0 yn1 yn0 xn1 xn0 ay a2 : ) :
                                  (a2 * yn1 - yn0) * ay + y2 - (a2 * xn1 - xn0) = y2 - a2 * y1 + y0 + a2 * (yn1 * ay + y1 - xn1) - (yn0 * ay + y0 - xn0)
                                  theorem Pell.x_sub_y_dvd_pow {a : } (a1 : 1 < a) (y n : ) :
                                  2 * a * y - y * y - 1 yz a1 n * (a - y) + ↑(y ^ n) - xz a1 n
                                  theorem Pell.xn_modEq_x2n_add_lem {a : } (a1 : 1 < a) (n j : ) :
                                  xn a1 n Pell.d✝ a1 * yn a1 n * (yn a1 n * xn a1 j) + xn a1 j
                                  theorem Pell.xn_modEq_x2n_add {a : } (a1 : 1 < a) (n j : ) :
                                  xn a1 (2 * n + j) + xn a1 j 0 [MOD xn a1 n]
                                  theorem Pell.xn_modEq_x2n_sub_lem {a : } (a1 : 1 < a) {n j : } (h : j n) :
                                  xn a1 (2 * n - j) + xn a1 j 0 [MOD xn a1 n]
                                  theorem Pell.xn_modEq_x2n_sub {a : } (a1 : 1 < a) {n j : } (h : j 2 * n) :
                                  xn a1 (2 * n - j) + xn a1 j 0 [MOD xn a1 n]
                                  theorem Pell.xn_modEq_x4n_add {a : } (a1 : 1 < a) (n j : ) :
                                  xn a1 (4 * n + j) xn a1 j [MOD xn a1 n]
                                  theorem Pell.xn_modEq_x4n_sub {a : } (a1 : 1 < a) {n j : } (h : j 2 * n) :
                                  xn a1 (4 * n - j) xn a1 j [MOD xn a1 n]
                                  theorem Pell.eq_of_xn_modEq_lem1 {a : } (a1 : 1 < a) {i n j : } :
                                  i < jj < nxn a1 i % xn a1 n < xn a1 j % xn a1 n
                                  theorem Pell.eq_of_xn_modEq_lem2 {a : } (a1 : 1 < a) {n : } (h : 2 * xn a1 n = xn a1 (n + 1)) :
                                  a = 2 n = 0
                                  theorem Pell.eq_of_xn_modEq_lem3 {a : } (a1 : 1 < a) {i n : } (npos : 0 < n) {j : } :
                                  i < jj 2 * nj n¬(a = 2 n = 1 i = 0 j = 2) → xn a1 i % xn a1 n < xn a1 j % xn a1 n
                                  theorem Pell.eq_of_xn_modEq_le {a : } (a1 : 1 < a) {i j n : } (ij : i j) (j2n : j 2 * n) (h : xn a1 i xn a1 j [MOD xn a1 n]) (ntriv : ¬(a = 2 n = 1 i = 0 j = 2)) :
                                  i = j
                                  theorem Pell.eq_of_xn_modEq {a : } (a1 : 1 < a) {i j n : } (i2n : i 2 * n) (j2n : j 2 * n) (h : xn a1 i xn a1 j [MOD xn a1 n]) (ntriv : a = 2n = 1(i = 0j 2) (i = 2j 0)) :
                                  i = j
                                  theorem Pell.eq_of_xn_modEq' {a : } (a1 : 1 < a) {i j n : } (ipos : 0 < i) (hin : i n) (j4n : j 4 * n) (h : xn a1 j xn a1 i [MOD xn a1 n]) :
                                  j = i j + i = 4 * n
                                  theorem Pell.modEq_of_xn_modEq {a : } (a1 : 1 < a) {i j n : } (ipos : 0 < i) (hin : i n) (h : xn a1 j xn a1 i [MOD xn a1 n]) :
                                  j i [MOD 4 * n] j + i 0 [MOD 4 * n]
                                  theorem Pell.xy_modEq_of_modEq {a b c : } (a1 : 1 < a) (b1 : 1 < b) (h : a b [MOD c]) (n : ) :
                                  xn a1 n xn b1 n [MOD c] yn a1 n yn b1 n [MOD c]
                                  theorem Pell.matiyasevic {a k x y : } :
                                  (∃ (a1 : 1 < a), xn a1 k = x yn a1 k = y) 1 < a k y (x = 1 y = 0 ∃ (u : ) (v : ) (s : ) (t : ) (b : ), x * x - (a * a - 1) * y * y = 1 u * u - (a * a - 1) * v * v = 1 s * s - (b * b - 1) * t * t = 1 1 < b b 1 [MOD 4 * y] b a [MOD u] 0 < v y * y v s x [MOD u] t k [MOD 4 * y])
                                  theorem Pell.eq_pow_of_pell_lem {a y k : } (hy0 : y 0) (hk0 : k 0) (hyk : y ^ k < a) :
                                  ↑(y ^ k) < 2 * a * y - y * y - 1
                                  theorem Pell.eq_pow_of_pell {m n k : } :
                                  n ^ k = m k = 0 m = 1 0 < k (n = 0 m = 0 0 < n ∃ (w : ) (a : ) (t : ) (z : ) (a1 : 1 < a), xn a1 k yn a1 k * (a - n) + m [MOD t] 2 * a * n = t + (n * n + 1) m < t n w k w a * a - ((w + 1) * (w + 1) - 1) * (w * z) * (w * z) = 1)