ℤ[√d] #
The ring of integers adjoined with a square root of d : ℤ
.
After defining the norm, we show that it is a linearly ordered commutative ring, as well as an integral domain.
We provide the universal property, that ring homomorphisms ℤ√d →+* R
correspond
to choices of square roots of d
in R
.
Conjugation in ℤ√d
. The conjugate of a + b √d
is a - b √d
.
Equations
theorem
Zsqrtd.sqLe_mul
{d x y z w : ℕ}
:
(SqLe x 1 y d → SqLe z 1 w d → SqLe (x * w + y * z) d (x * z + d * y * w) 1) ∧ (SqLe x 1 y d → SqLe w d z 1 → SqLe (x * z + d * y * w) 1 (x * w + y * z) d) ∧ (SqLe y d x 1 → SqLe z 1 w d → SqLe (x * z + d * y * w) 1 (x * w + y * z) d) ∧ (SqLe y d x 1 → SqLe w d z 1 → SqLe (x * w + y * z) d (x * z + d * y * w) 1)
Nonnegativity of an element of ℤ√d
.
Equations
Instances For
instance
Zsqrtd.instIsOrderedAddMonoidCastInt
{d : ℕ}
[dnsq : Nonsquare d]
:
IsOrderedAddMonoid (ℤ√↑d)
The kernel of the norm map on ℤ√d
equals the submonoid of unitary elements.