Documentation

Mathlib.Order.Category.CompleteLat

The category of complete lattices #

This file defines CompleteLat, the category of complete lattices.

structure CompleteLat :
Type (u_1 + 1)

The category of complete lattices.

Instances For
    @[reducible, inline]

    Construct a bundled CompleteLat from the underlying type and typeclass.

    Equations
      Instances For
        theorem CompleteLat.coe_of (α : Type u_1) [CompleteLattice α] :
        (of α) = α
        def CompleteLat.Iso.mk {α β : CompleteLat} (e : α ≃o β) :
        α β

        Constructs an isomorphism of complete lattices from an order isomorphism between them.

        Equations
          Instances For
            @[simp]
            theorem CompleteLat.Iso.mk_inv {α β : CompleteLat} (e : α ≃o β) :
            (mk e).inv = CategoryTheory.ConcreteCategory.ofHom { toFun := e.symm, map_sInf' := , map_sSup' := }
            @[simp]
            theorem CompleteLat.Iso.mk_hom {α β : CompleteLat} (e : α ≃o β) :
            (mk e).hom = CategoryTheory.ConcreteCategory.ofHom { toFun := e, map_sInf' := , map_sSup' := }
            @[simp]
            theorem CompleteLat.dual_map {x✝ x✝¹ : CompleteLat} (a : CompleteLatticeHom x✝ x✝¹) :

            The equivalence between CompleteLat and itself induced by OrderDual both ways.

            Equations
              Instances For