The category of bounded lattices #
This file defines BddLat
, the category of bounded lattices.
In literature, this is sometimes called Lat
, the category of lattices, because being a lattice is
understood to entail having a bottom and a top element.
The type of morphisms in BddLat
.
- hom' : BoundedLatticeHom ↑X.toLat ↑Y.toLat
The underlying
BoundedLatticeHom
.
Instances For
instance
BddLat.instConcreteCategoryBoundedLatticeHomCarrier :
CategoryTheory.ConcreteCategory BddLat fun (x1 x2 : BddLat) => BoundedLatticeHom ↑x1.toLat ↑x2.toLat
Equations
@[reducible, inline]
abbrev
BddLat.ofHom
{X Y : Type u}
[Lattice X]
[BoundedOrder X]
[Lattice Y]
[BoundedOrder Y]
(f : BoundedLatticeHom X Y)
:
Typecheck a BoundedLatticeHom
as a morphism in BddLat
.
Equations
Instances For
@[simp]
@[simp]
theorem
BddLat.ext
{X Y : BddLat}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X.toLat), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
BddLat.ext_iff
{X Y : BddLat}
{f g : X ⟶ Y}
:
f = g ↔ ∀ (x : ↑X.toLat), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
Equations
Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
The functor that adds a bottom and a top element to a lattice. This is the free functor.
Equations
Instances For
latToBddLat
is left adjoint to the forgetful functor, meaning it is the free
functor from Lat
to BddLat
.
Equations
Instances For
latToBddLat
and OrderDual
commute.