Documentation

Mathlib.Order.Category.BddLat

The category of bounded lattices #

This file defines BddLat, the category of bounded lattices.

In literature, this is sometimes called Lat, the category of lattices, because being a lattice is understood to entail having a bottom and a top element.

structure BddLatextends Lat :
Type (u_1 + 1)

The category of bounded lattices with bounded lattice morphisms.

Instances For
    @[reducible, inline]
    abbrev BddLat.of (α : Type u_1) [Lattice α] [BoundedOrder α] :

    Construct a bundled BddLat from Lattice + BoundedOrder.

    Equations
      Instances For
        theorem BddLat.coe_of (α : Type u_1) [Lattice α] [BoundedOrder α] :
        (of α).toLat = α
        structure BddLat.Hom (X Y : BddLat) :

        The type of morphisms in BddLat.

        Instances For
          theorem BddLat.Hom.ext {X Y : BddLat} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
          x = y
          theorem BddLat.Hom.ext_iff {X Y : BddLat} {x y : X.Hom Y} :
          x = y x.hom' = y.hom'
          @[reducible, inline]
          abbrev BddLat.Hom.hom {X Y : BddLat} (f : X.Hom Y) :

          Turn a morphism in BddLat back into a BoundedLatticeHom.

          Equations
            Instances For
              @[reducible, inline]
              abbrev BddLat.ofHom {X Y : Type u} [Lattice X] [BoundedOrder X] [Lattice Y] [BoundedOrder Y] (f : BoundedLatticeHom X Y) :
              of X of Y

              Typecheck a BoundedLatticeHom as a morphism in BddLat.

              Equations
                Instances For
                  def BddLat.Hom.Simps.hom (X Y : BddLat) (f : X.Hom Y) :

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For
                      @[simp]
                      theorem BddLat.ext {X Y : BddLat} {f g : X Y} (w : ∀ (x : X.toLat), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                      f = g
                      theorem BddLat.hom_ext {X Y : BddLat} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      theorem BddLat.hom_ext_iff {X Y : BddLat} {f g : X Y} :
                      def BddLat.Iso.mk {α β : BddLat} (e : α.toLat ≃o β.toLat) :
                      α β

                      Constructs an equivalence between bounded lattices from an order isomorphism between them.

                      Equations
                        Instances For
                          @[simp]
                          theorem BddLat.Iso.mk_inv {α β : BddLat} (e : α.toLat ≃o β.toLat) :
                          (mk e).inv = ofHom (have __src := { toFun := e.symm, map_sup' := , map_inf' := }; { toFun := e.symm, map_sup' := , map_inf' := , map_top' := , map_bot' := })
                          @[simp]
                          theorem BddLat.Iso.mk_hom {α β : BddLat} (e : α.toLat ≃o β.toLat) :
                          (mk e).hom = ofHom (have __src := { toFun := e, map_sup' := , map_inf' := }; { toFun := e, map_sup' := , map_inf' := , map_top' := , map_bot' := })

                          OrderDual as a functor.

                          Equations
                            Instances For
                              @[simp]
                              theorem BddLat.dual_map {X✝ Y✝ : BddLat} (f : X✝ Y✝) :

                              The equivalence between BddLat and itself induced by OrderDual both ways.

                              Equations
                                Instances For

                                  The functor that adds a bottom and a top element to a lattice. This is the free functor.

                                  Equations
                                    Instances For

                                      latToBddLat is left adjoint to the forgetful functor, meaning it is the free functor from Lat to BddLat.

                                      Equations
                                        Instances For