Documentation

Mathlib.Order.Category.BddOrd

The category of bounded orders #

This defines BddOrd, the category of bounded orders.

structure BddOrdextends PartOrd :
Type (u_1 + 1)

The category of bounded orders with monotone functions.

Instances For
    @[reducible, inline]
    abbrev BddOrd.of (X : Type u_1) [PartialOrder X] [BoundedOrder X] :

    Construct a bundled BddOrd from the underlying type and typeclass.

    Equations
      Instances For
        structure BddOrd.Hom (X Y : BddOrd) :

        The type of morphisms in BddOrd R.

        Instances For
          theorem BddOrd.Hom.ext {X Y : BddOrd} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
          x = y
          theorem BddOrd.Hom.ext_iff {X Y : BddOrd} {x y : X.Hom Y} :
          x = y x.hom' = y.hom'
          @[reducible, inline]
          abbrev BddOrd.Hom.hom {X Y : BddOrd} (f : X.Hom Y) :

          Turn a morphism in BddOrd back into a BoundedOrderHom.

          Equations
            Instances For
              @[reducible, inline]

              Typecheck a BoundedOrderHom as a morphism in BddOrd.

              Equations
                Instances For

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For

                      The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                      theorem BddOrd.ext {X Y : BddOrd} {f g : X Y} (w : ∀ (x : X.toPartOrd), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                      f = g
                      theorem BddOrd.coe_of (X : Type u) [PartialOrder X] [BoundedOrder X] :
                      (of X).toPartOrd = X
                      @[simp]
                      theorem BddOrd.hom_comp {X Y Z : BddOrd} (f : X Y) (g : Y Z) :
                      theorem BddOrd.hom_ext {X Y : BddOrd} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      theorem BddOrd.hom_ext_iff {X Y : BddOrd} {f g : X Y} :
                      @[simp]
                      @[simp]
                      theorem BddOrd.ofHom_hom {X Y : BddOrd} (f : X Y) :

                      OrderDual as a functor.

                      Equations
                        Instances For
                          @[simp]
                          theorem BddOrd.dual_map {X✝ Y✝ : BddOrd} (f : X✝ Y✝) :
                          def BddOrd.Iso.mk {α β : BddOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
                          α β

                          Constructs an equivalence between bounded orders from an order isomorphism between them.

                          Equations
                            Instances For
                              @[simp]
                              theorem BddOrd.Iso.mk_inv {α β : BddOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
                              (mk e).inv = ofHom e.symm
                              @[simp]
                              theorem BddOrd.Iso.mk_hom {α β : BddOrd} (e : α.toPartOrd ≃o β.toPartOrd) :
                              (mk e).hom = ofHom e

                              The equivalence between BddOrd and itself induced by OrderDual both ways.

                              Equations
                                Instances For