Category of partial orders #
This defines PartOrd
, the category of partial orders with monotone maps.
The category of partial orders.
- carrier : Type u_1
The underlying partially ordered type.
- str : PartialOrder ↑self
Instances For
@[reducible, inline]
Construct a bundled PartOrd
from the underlying type and typeclass.
Equations
Instances For
instance
PartOrd.instConcreteCategoryOrderHomCarrier :
CategoryTheory.ConcreteCategory PartOrd fun (x1 x2 : PartOrd) => ↑x1 →o ↑x2
Equations
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
@[simp]
@[simp]
theorem
PartOrd.ext
{X Y : PartOrd}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
PartOrd.ext_iff
{X Y : PartOrd}
{f g : X ⟶ Y}
:
f = g ↔ ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
@[simp]
@[simp]
theorem
PartOrd.ofHom_comp
{X Y Z : Type u}
[PartialOrder X]
[PartialOrder Y]
[PartialOrder Z]
(f : X →o Y)
(g : Y →o Z)
:
Constructs an equivalence between partial orders from an order isomorphism between them.
Equations
Instances For
@[simp]
preordToPartOrd
is left adjoint to the forgetful functor, meaning it is the free
functor from Preord
to PartOrd
.
Equations
Instances For
PreordToPartOrd
and OrderDual
commute.
Equations
Instances For
@[simp]
theorem
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe'
(X : Preord)
(a : ↑(preordToPartOrd.obj (Preord.dual.obj X)))
: