instance
Preord.instConcreteCategoryOrderHomCarrier :
CategoryTheory.ConcreteCategory Preord fun (x1 x2 : Preord) => ↑x1 →o ↑x2
Equations
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
@[simp]
@[simp]
theorem
Preord.ext
{X Y : Preord}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
Preord.ext_iff
{X Y : Preord}
{f g : X ⟶ Y}
:
f = g ↔ ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
Constructs an equivalence between preorders from an order isomorphism between them.
Equations
Instances For
@[simp]