The categories of semilattices #
This defines SemilatSupCat
and SemilatInfCat
, the categories of sup-semilattices with a bottom
element and inf-semilattices with a top element.
References #
The category of sup-semilattices with a bottom element.
- X : Type u
The underlying type of a sup-semilattice with a bottom element.
- isSemilatticeSup : SemilatticeSup self.X
Instances For
The category of inf-semilattices with a top element.
- X : Type u
The underlying type of an inf-semilattice with a top element.
- isSemilatticeInf : SemilatticeInf self.X
Instances For
instance
SemilatSupCat.instConcreteCategorySupBotHomX :
CategoryTheory.ConcreteCategory SemilatSupCat fun (x1 x2 : SemilatSupCat) => SupBotHom x1.X x2.X
Equations
Equations
@[simp]
instance
SemilatInfCat.instConcreteCategoryInfTopHomX :
CategoryTheory.ConcreteCategory SemilatInfCat fun (x1 x2 : SemilatInfCat) => InfTopHom x1.X x2.X
Equations
Equations
@[simp]
Order dual #
Constructs an isomorphism of lattices from an order isomorphism between them.
Equations
Instances For
@[simp]
Constructs an isomorphism of lattices from an order isomorphism between them.
Equations
Instances For
@[simp]
@[simp]
@[simp]
The equivalence between SemilatSupCat
and SemilatInfCat
induced by OrderDual
both ways.