Documentation

Mathlib.Order.Category.Semilat

The categories of semilattices #

This defines SemilatSupCat and SemilatInfCat, the categories of sup-semilattices with a bottom element and inf-semilattices with a top element.

References #

structure SemilatSupCat :
Type (u + 1)

The category of sup-semilattices with a bottom element.

  • X : Type u

    The underlying type of a sup-semilattice with a bottom element.

  • isSemilatticeSup : SemilatticeSup self.X
  • isOrderBot : OrderBot self.X
Instances For
    structure SemilatInfCat :
    Type (u + 1)

    The category of inf-semilattices with a top element.

    Instances For
      @[reducible, inline]

      Construct a bundled SemilatSupCat from a SemilatticeSup.

      Equations
        Instances For
          theorem SemilatSupCat.coe_of (α : Type u_1) [SemilatticeSup α] [OrderBot α] :
          (of α).X = α
          @[reducible, inline]

          Construct a bundled SemilatInfCat from a SemilatticeInf.

          Equations
            Instances For
              theorem SemilatInfCat.coe_of (α : Type u_1) [SemilatticeInf α] [OrderTop α] :
              (of α).X = α

              Order dual #

              def SemilatSupCat.Iso.mk {α β : SemilatSupCat} (e : α.X ≃o β.X) :
              α β

              Constructs an isomorphism of lattices from an order isomorphism between them.

              Equations
                Instances For
                  @[simp]
                  theorem SemilatSupCat.Iso.mk_hom_toSupHom_toFun {α β : SemilatSupCat} (e : α.X ≃o β.X) (a : α.X) :
                  (mk e).hom.toSupHom a = e a
                  @[simp]
                  theorem SemilatSupCat.Iso.mk_inv_toSupHom_toFun {α β : SemilatSupCat} (e : α.X ≃o β.X) (a : β.X) :
                  (mk e).inv.toSupHom a = e.symm a
                  @[simp]
                  theorem SemilatSupCat.dual_map {x✝ x✝¹ : SemilatSupCat} (a : SupBotHom x✝.X x✝¹.X) :
                  def SemilatInfCat.Iso.mk {α β : SemilatInfCat} (e : α.X ≃o β.X) :
                  α β

                  Constructs an isomorphism of lattices from an order isomorphism between them.

                  Equations
                    Instances For
                      @[simp]
                      theorem SemilatInfCat.Iso.mk_hom_toInfHom_toFun {α β : SemilatInfCat} (e : α.X ≃o β.X) (a : α.X) :
                      (mk e).hom.toInfHom a = e a
                      @[simp]
                      theorem SemilatInfCat.Iso.mk_inv_toInfHom_toFun {α β : SemilatInfCat} (e : α.X ≃o β.X) (a : β.X) :
                      (mk e).inv.toInfHom a = e.symm a
                      @[simp]
                      theorem SemilatInfCat.dual_map {x✝ x✝¹ : SemilatInfCat} (a : InfTopHom x✝.X x✝¹.X) :

                      The equivalence between SemilatSupCat and SemilatInfCat induced by OrderDual both ways.

                      Equations
                        Instances For