Documentation

Mathlib.Order.Category.Lat

The category of lattices #

This defines Lat, the category of lattices.

Note that Lat doesn't correspond to the literature definition of [Lat] (https://ncatlab.org/nlab/show/Lat) as we don't require bottom or top elements. Instead, Lat corresponds to BddLat.

TODO #

The free functor from Lat to BddLat is X → WithTop (WithBot X).

structure Lat :
Type (u_1 + 1)

The category of lattices.

  • carrier : Type u_1

    The underlying lattices.

  • str : Lattice self
Instances For
    Equations
      @[reducible, inline]
      abbrev Lat.of (X : Type u_1) [Lattice X] :

      Construct a bundled Lat from the underlying type and typeclass.

      Equations
        Instances For
          structure Lat.Hom (X Y : Lat) :

          The type of morphisms in Lat R.

          Instances For
            theorem Lat.Hom.ext {X Y : Lat} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
            x = y
            theorem Lat.Hom.ext_iff {X Y : Lat} {x y : X.Hom Y} :
            x = y x.hom' = y.hom'
            @[reducible, inline]
            abbrev Lat.Hom.hom {X Y : Lat} (f : X.Hom Y) :
            LatticeHom X Y

            Turn a morphism in Lat back into a LatticeHom.

            Equations
              Instances For
                @[reducible, inline]
                abbrev Lat.ofHom {X Y : Type u} [Lattice X] [Lattice Y] (f : LatticeHom X Y) :
                of X of Y

                Typecheck a LatticeHom as a morphism in Lat.

                Equations
                  Instances For
                    def Lat.Hom.Simps.hom (X Y : Lat) (f : X.Hom Y) :
                    LatticeHom X Y

                    Use the ConcreteCategory.hom projection for @[simps] lemmas.

                    Equations
                      Instances For

                        The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                        theorem Lat.ext {X Y : Lat} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                        f = g
                        theorem Lat.ext_iff {X Y : Lat} {f g : X Y} :
                        theorem Lat.coe_of (X : Type u) [Lattice X] :
                        (of X) = X
                        @[simp]
                        theorem Lat.hom_comp {X Y Z : Lat} (f : X Y) (g : Y Z) :
                        theorem Lat.hom_ext {X Y : Lat} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                        f = g
                        theorem Lat.hom_ext_iff {X Y : Lat} {f g : X Y} :
                        @[simp]
                        theorem Lat.hom_ofHom {X Y : Type u} [Lattice X] [Lattice Y] (f : LatticeHom X Y) :
                        @[simp]
                        theorem Lat.ofHom_hom {X Y : Lat} (f : X Y) :
                        @[simp]
                        theorem Lat.ofHom_comp {X Y Z : Type u} [Lattice X] [Lattice Y] [Lattice Z] (f : LatticeHom X Y) (g : LatticeHom Y Z) :
                        theorem Lat.ofHom_apply {X Y : Type u} [Lattice X] [Lattice Y] (f : LatticeHom X Y) (x : X) :
                        def Lat.Iso.mk {α β : Lat} (e : α ≃o β) :
                        α β

                        Constructs an isomorphism of lattices from an order isomorphism between them.

                        Equations
                          Instances For
                            @[simp]
                            theorem Lat.Iso.mk_hom {α β : Lat} (e : α ≃o β) :
                            (mk e).hom = ofHom { toFun := e, map_sup' := , map_inf' := }
                            @[simp]
                            theorem Lat.Iso.mk_inv {α β : Lat} (e : α ≃o β) :
                            (mk e).inv = ofHom { toFun := e.symm, map_sup' := , map_inf' := }

                            OrderDual as a functor.

                            Equations
                              Instances For
                                @[simp]
                                theorem Lat.dual_map {X✝ Y✝ : Lat} (f : X✝ Y✝) :

                                The equivalence between Lat and itself induced by OrderDual both ways.

                                Equations
                                  Instances For