Documentation

Mathlib.Order.Category.Frm

The category of frames #

This file defines Frm, the category of frames.

References #

structure Frm :
Type (u_1 + 1)

The category of frames.

Instances For
    Equations
      @[reducible, inline]
      abbrev Frm.of (X : Type u_1) [Order.Frame X] :

      Construct a bundled Frm from the underlying type and typeclass.

      Equations
        Instances For
          structure Frm.Hom (X Y : Frm) :

          The type of morphisms in Frm R.

          Instances For
            theorem Frm.Hom.ext {X Y : Frm} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
            x = y
            theorem Frm.Hom.ext_iff {X Y : Frm} {x y : X.Hom Y} :
            x = y x.hom' = y.hom'
            @[reducible, inline]
            abbrev Frm.Hom.hom {X Y : Frm} (f : X.Hom Y) :
            FrameHom X Y

            Turn a morphism in Frm back into a FrameHom.

            Equations
              Instances For
                @[reducible, inline]
                abbrev Frm.ofHom {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) :
                of X of Y

                Typecheck a FrameHom as a morphism in Frm.

                Equations
                  Instances For
                    def Frm.Hom.Simps.hom (X Y : Frm) (f : X.Hom Y) :
                    FrameHom X Y

                    Use the ConcreteCategory.hom projection for @[simps] lemmas.

                    Equations
                      Instances For

                        The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                        theorem Frm.ext {X Y : Frm} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                        f = g
                        theorem Frm.ext_iff {X Y : Frm} {f g : X Y} :
                        theorem Frm.coe_of (X : Type u) [Order.Frame X] :
                        (of X) = X
                        @[simp]
                        theorem Frm.hom_comp {X Y Z : Frm} (f : X Y) (g : Y Z) :
                        theorem Frm.hom_ext {X Y : Frm} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                        f = g
                        theorem Frm.hom_ext_iff {X Y : Frm} {f g : X Y} :
                        @[simp]
                        theorem Frm.hom_ofHom {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) :
                        @[simp]
                        theorem Frm.ofHom_hom {X Y : Frm} (f : X Y) :
                        @[simp]
                        theorem Frm.ofHom_apply {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) (x : X) :
                        def Frm.Iso.mk {α β : Frm} (e : α ≃o β) :
                        α β

                        Constructs an isomorphism of frames from an order isomorphism between them.

                        Equations
                          Instances For
                            @[simp]
                            theorem Frm.Iso.mk_hom {α β : Frm} (e : α ≃o β) :
                            (mk e).hom = ofHom { toFun := e, map_inf' := , map_top' := , map_sSup' := }
                            @[simp]
                            theorem Frm.Iso.mk_inv {α β : Frm} (e : α ≃o β) :
                            (mk e).inv = ofHom { toFun := e.symm, map_inf' := , map_top' := , map_sSup' := }