instance
Frm.instConcreteCategoryFrameHomCarrier :
CategoryTheory.ConcreteCategory Frm fun (x1 x2 : Frm) => FrameHom ↑x1 ↑x2
Equations
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
@[simp]
@[simp]
theorem
Frm.ext
{X Y : Frm}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
Frm.ext_iff
{X Y : Frm}
{f g : X ⟶ Y}
:
f = g ↔ ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Frm.ofHom_comp
{X Y Z : Type u}
[Order.Frame X]
[Order.Frame Y]
[Order.Frame Z]
(f : FrameHom X Y)
(g : FrameHom Y Z)
:
Constructs an isomorphism of frames from an order isomorphism between them.