Documentation

Mathlib.Order.Category.LinOrd

Category of linear orders #

This defines LinOrd, the category of linear orders with monotone maps.

structure LinOrd :
Type (u_1 + 1)

The category of linear orders.

  • carrier : Type u_1

    The underlying linearly ordered type.

  • str : LinearOrder self
Instances For
    @[reducible, inline]
    abbrev LinOrd.of (X : Type u_1) [LinearOrder X] :

    Construct a bundled LinOrd from the underlying type and typeclass.

    Equations
      Instances For
        structure LinOrd.Hom (X Y : LinOrd) :

        The type of morphisms in LinOrd R.

        Instances For
          theorem LinOrd.Hom.ext_iff {X Y : LinOrd} {x y : X.Hom Y} :
          x = y x.hom' = y.hom'
          theorem LinOrd.Hom.ext {X Y : LinOrd} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
          x = y
          @[reducible, inline]
          abbrev LinOrd.Hom.hom {X Y : LinOrd} (f : X.Hom Y) :
          X →o Y

          Turn a morphism in LinOrd back into a OrderHom.

          Equations
            Instances For
              @[reducible, inline]
              abbrev LinOrd.ofHom {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X →o Y) :
              of X of Y

              Typecheck a OrderHom as a morphism in LinOrd.

              Equations
                Instances For
                  def LinOrd.Hom.Simps.hom (X Y : LinOrd) (f : X.Hom Y) :
                  X →o Y

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For

                      The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                      theorem LinOrd.ext {X Y : LinOrd} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                      f = g
                      theorem LinOrd.coe_of (X : Type u) [LinearOrder X] :
                      (of X) = X
                      @[simp]
                      theorem LinOrd.hom_comp {X Y Z : LinOrd} (f : X Y) (g : Y Z) :
                      theorem LinOrd.hom_ext {X Y : LinOrd} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      theorem LinOrd.hom_ext_iff {X Y : LinOrd} {f g : X Y} :
                      @[simp]
                      theorem LinOrd.hom_ofHom {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X →o Y) :
                      @[simp]
                      theorem LinOrd.ofHom_hom {X Y : LinOrd} (f : X Y) :
                      @[simp]
                      theorem LinOrd.ofHom_comp {X Y Z : Type u} [LinearOrder X] [LinearOrder Y] [LinearOrder Z] (f : X →o Y) (g : Y →o Z) :
                      theorem LinOrd.ofHom_apply {X Y : Type u} [LinearOrder X] [LinearOrder Y] (f : X →o Y) (x : X) :
                      def LinOrd.Iso.mk {α β : LinOrd} (e : α ≃o β) :
                      α β

                      Constructs an equivalence between linear orders from an order isomorphism between them.

                      Equations
                        Instances For
                          @[simp]
                          theorem LinOrd.Iso.mk_inv {α β : LinOrd} (e : α ≃o β) :
                          (mk e).inv = ofHom e.symm
                          @[simp]
                          theorem LinOrd.Iso.mk_hom {α β : LinOrd} (e : α ≃o β) :
                          (mk e).hom = ofHom e

                          OrderDual as a functor.

                          Equations
                            Instances For
                              @[simp]
                              theorem LinOrd.dual_map {X✝ Y✝ : LinOrd} (f : X✝ Y✝) :

                              The equivalence between LinOrd and itself induced by OrderDual both ways.

                              Equations
                                Instances For