The category of linear orders.
- carrier : Type u_1
The underlying linearly ordered type.
- str : LinearOrder ↑self
Instances For
instance
LinOrd.instConcreteCategoryOrderHomCarrier :
CategoryTheory.ConcreteCategory LinOrd fun (x1 x2 : LinOrd) => ↑x1 →o ↑x2
Equations
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
@[simp]
@[simp]
theorem
LinOrd.ext
{X Y : LinOrd}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
LinOrd.ext_iff
{X Y : LinOrd}
{f g : X ⟶ Y}
:
f = g ↔ ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
@[simp]
@[simp]
theorem
LinOrd.ofHom_comp
{X Y Z : Type u}
[LinearOrder X]
[LinearOrder Y]
[LinearOrder Z]
(f : X →o Y)
(g : Y →o Z)
:
Constructs an equivalence between linear orders from an order isomorphism between them.
Equations
Instances For
@[simp]