Documentation

Mathlib.Order.CompleteSublattice

Complete Sublattices #

This file defines complete sublattices. These are subsets of complete lattices which are closed under arbitrary suprema and infima. As a standard example one could take the complete sublattice of invariant submodules of some module with respect to a linear map.

Main definitions: #

structure CompleteSublattice (α : Type u_1) [CompleteLattice α] extends Sublattice α :
Type u_1

A complete sublattice is a subset of a complete lattice that is closed under arbitrary suprema and infima.

Instances For
    def CompleteSublattice.mk' {α : Type u_1} [CompleteLattice α] (carrier : Set α) (sSupClosed' : ∀ ⦃s : Set α⦄, s carriersSup s carrier) (sInfClosed' : ∀ ⦃s : Set α⦄, s carriersInf s carrier) :

    To check that a subset is a complete sublattice, one does not need to check that it is closed under binary Sup since this follows from the stronger sSup condition. Likewise for infima.

    Equations
      Instances For
        @[simp]
        theorem CompleteSublattice.mk'_carrier {α : Type u_1} [CompleteLattice α] (carrier : Set α) (sSupClosed' : ∀ ⦃s : Set α⦄, s carriersSup s carrier) (sInfClosed' : ∀ ⦃s : Set α⦄, s carriersInf s carrier) :
        (mk' carrier sSupClosed' sInfClosed').carrier = carrier
        instance CompleteSublattice.instBot {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} :
        Bot L
        Equations
          instance CompleteSublattice.instTop {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} :
          Top L
          Equations
            Equations
              Equations
                theorem CompleteSublattice.sSupClosed {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {s : Set α} (h : s L) :
                sSup s L
                theorem CompleteSublattice.sInfClosed {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {s : Set α} (h : s L) :
                sInf s L
                @[simp]
                @[simp]
                @[simp]
                theorem CompleteSublattice.coe_sSup {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} (S : Set L) :
                (sSup S) = sSup {x : α | sS, s = x}
                theorem CompleteSublattice.coe_sSup' {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} (S : Set L) :
                (sSup S) = NS, N
                @[simp]
                theorem CompleteSublattice.coe_sInf {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} (S : Set L) :
                (sInf S) = sInf {x : α | sS, s = x}
                theorem CompleteSublattice.coe_sInf' {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} (S : Set L) :
                (sInf S) = NS, N
                @[simp]
                theorem CompleteSublattice.coe_iSup {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {ι : Sort u_3} (f : ιL) :
                (iSup f) = ⨆ (i : ι), (f i)
                @[simp]
                theorem CompleteSublattice.coe_iInf {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {ι : Sort u_3} (f : ιL) :
                (iInf f) = ⨅ (i : ι), (f i)

                The natural complete lattice hom from a complete sublattice to the original lattice.

                Equations
                  Instances For
                    theorem CompleteSublattice.subtype_apply {α : Type u_1} [CompleteLattice α] (L : Sublattice α) (a : L) :
                    L.subtype a = a

                    The push forward of a complete sublattice under a complete lattice hom is a complete sublattice.

                    Equations
                      Instances For
                        @[simp]
                        theorem CompleteSublattice.map_carrier {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (L : CompleteSublattice α) :
                        (map f L).carrier = f '' L
                        @[simp]
                        theorem CompleteSublattice.mem_map {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) {L : CompleteSublattice α} {b : β} :
                        b map f L aL, f a = b

                        The pull back of a complete sublattice under a complete lattice hom is a complete sublattice.

                        Equations
                          Instances For
                            @[simp]
                            theorem CompleteSublattice.comap_carrier {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (L : CompleteSublattice β) :
                            (comap f L).carrier = f ⁻¹' L
                            @[simp]
                            theorem CompleteSublattice.mem_comap {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) {L : CompleteSublattice β} {a : α} :
                            a comap f L f a L
                            theorem CompleteSublattice.disjoint_iff {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {a b : L} :
                            Disjoint a b Disjoint a b
                            theorem CompleteSublattice.codisjoint_iff {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {a b : L} :
                            Codisjoint a b Codisjoint a b
                            theorem CompleteSublattice.isCompl_iff {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} {a b : L} :
                            IsCompl a b IsCompl a b
                            theorem CompleteSublattice.isComplemented_iff {α : Type u_1} [CompleteLattice α] {L : CompleteSublattice α} :
                            ComplementedLattice L aL, bL, IsCompl a b
                            def CompleteSublattice.copy {α : Type u_1} [CompleteLattice α] (L : CompleteSublattice α) (s : Set α) (hs : s = L) :

                            Copy of a complete sublattice with a new carrier equal to the old one. Useful to fix definitional equalities.

                            Equations
                              Instances For
                                @[simp]
                                theorem CompleteSublattice.coe_copy {α : Type u_1} [CompleteLattice α] (L : CompleteSublattice α) (s : Set α) (hs : s = L) :
                                (L.copy s hs) = s
                                theorem CompleteSublattice.copy_eq {α : Type u_1} [CompleteLattice α] (L : CompleteSublattice α) (s : Set α) (hs : s = L) :
                                L.copy s hs = L

                                The range of a CompleteLatticeHom is a CompleteSublattice.

                                See Note [range copy pattern].

                                Equations
                                  Instances For
                                    theorem CompleteLatticeHom.range_coe {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
                                    f.range = Set.range f
                                    noncomputable def CompleteLatticeHom.toOrderIsoRangeOfInjective {α : Type u_1} {β : Type u_2} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (hf : Function.Injective f) :
                                    α ≃o f.range

                                    We can regard a complete lattice homomorphism as an order equivalence to its range.

                                    Equations
                                      Instances For