Documentation

Mathlib.Order.Filter.Cocardinal

The cocardinal filter #

In this file we define Filter.cocardinal hc: the filter of sets with cardinality less than a regular cardinal c that satisfies Cardinal.aleph0 < c. Such filters are CardinalInterFilter with cardinality c.

def Filter.cocardinal (α : Type u) {c : Cardinal.{u}} (hreg : c.IsRegular) :

The filter defined by all sets that have a complement with at most cardinality c. For a union of c sets of c elements to have c elements, we need that c is a regular cardinal.

Equations
    Instances For
      @[simp]
      theorem Filter.mem_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} :
      s cocardinal α hreg Cardinal.mk s < c
      @[simp]
      theorem Filter.eventually_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {p : αProp} :
      (∀ᶠ (x : α) in cocardinal α hreg, p x) Cardinal.mk {x : α | ¬p x} < c
      theorem Filter.hasBasis_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} :
      (cocardinal α hreg).HasBasis {s : Set α | Cardinal.mk s < c} compl
      theorem Filter.frequently_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {p : αProp} :
      (∃ᶠ (x : α) in cocardinal α hreg, p x) c Cardinal.mk {x : α | p x}
      theorem Filter.frequently_cocardinal_mem {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} :
      (∃ᶠ (x : α) in cocardinal α hreg, x s) c Cardinal.mk s
      @[simp]
      theorem Filter.cocardinal_inf_principal_neBot_iff {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} :
      (cocardinal α hregprincipal s).NeBot c Cardinal.mk s
      theorem Filter.compl_mem_cocardinal_of_card_lt {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} (hs : Cardinal.mk s < c) :
      s cocardinal α hreg
      theorem Set.Finite.compl_mem_cocardinal {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} (hs : s.Finite) :
      theorem Filter.eventually_cocardinal_notMem_of_card_lt {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} (hs : Cardinal.mk s < c) :
      ∀ᶠ (x : α) in cocardinal α hreg, xs
      @[deprecated Filter.eventually_cocardinal_notMem_of_card_lt (since := "2025-05-24")]
      theorem Filter.eventually_cocardinal_nmem_of_card_lt {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} {s : Set α} (hs : Cardinal.mk s < c) :
      ∀ᶠ (x : α) in cocardinal α hreg, xs

      Alias of Filter.eventually_cocardinal_notMem_of_card_lt.

      theorem Finset.eventually_cocardinal_notMem {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} (s : Finset α) :
      ∀ᶠ (x : α) in Filter.cocardinal α hreg, xs
      @[deprecated Finset.eventually_cocardinal_notMem (since := "2025-05-24")]
      theorem Finset.eventually_cocardinal_nmem {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} (s : Finset α) :
      ∀ᶠ (x : α) in Filter.cocardinal α hreg, xs

      Alias of Finset.eventually_cocardinal_notMem.

      theorem Filter.eventually_cocardinal_ne {α : Type u} {c : Cardinal.{u}} {hreg : c.IsRegular} (x : α) :
      ∀ᶠ (a : α) in cocardinal α hreg, a x
      @[reducible, inline]
      abbrev Filter.cocountable {α : Type u} :

      The filter defined by all sets that have countable complements.

      Equations
        Instances For