Order properties on tuples #
@[deprecated Fin.preimage_insertNth_Icc_of_notMem (since := "2025-05-23")]
theorem
Fin.preimage_insertNth_Icc_of_not_mem
{n : ℕ}
{α : Fin (n + 1) → Type u_1}
[(i : Fin (n + 1)) → Preorder (α i)]
{i : Fin (n + 1)}
{x : α i}
{q₁ q₂ : (j : Fin (n + 1)) → α j}
(hx : x ∉ Set.Icc (q₁ i) (q₂ i))
:
Alias of Fin.preimage_insertNth_Icc_of_notMem
.
theorem
liftFun_vecCons
{α : Type u_1}
{n : ℕ}
(r : α → α → Prop)
[IsTrans α r]
{f : Fin (n + 1) → α}
{a : α}
:
Relator.LiftFun (fun (x1 x2 : Fin (n + 1).succ) => x1 < x2) r (Matrix.vecCons a f) (Matrix.vecCons a f) ↔ r a (f 0) ∧ Relator.LiftFun (fun (x1 x2 : Fin (n + 1)) => x1 < x2) r f f
theorem
StrictMono.vecCons
{α : Type u_1}
[Preorder α]
{n : ℕ}
{f : Fin (n + 1) → α}
{a : α}
(hf : StrictMono f)
(ha : a < f 0)
:
StrictMono (Matrix.vecCons a f)
theorem
StrictAnti.vecCons
{α : Type u_1}
[Preorder α]
{n : ℕ}
{f : Fin (n + 1) → α}
{a : α}
(hf : StrictAnti f)
(ha : f 0 < a)
:
StrictAnti (Matrix.vecCons a f)
The space of functions Fin 2 → α
is order equivalent to α × α
. See also
OrderIso.piFinTwoIso
.
Equations
Instances For
def
Fin.insertNthOrderIso
{n : ℕ}
(α : Fin (n + 1) → Type u_2)
[(i : Fin (n + 1)) → LE (α i)]
(p : Fin (n + 1))
:
Order isomorphism between tuples of length n + 1
and pairs of an element and a tuple of length
n
given by separating out the p
-th element of the tuple.
This is Fin.insertNth
as an OrderIso
.
Equations
Instances For
@[simp]
Note this lemma can only be written about non-dependent tuples as insertNth (last n) = snoc
is
not a definitional equality.
@[simp]