Documentation

Mathlib.Order.Preorder.Finsupp

Pointwise order on finitely supported functions #

This file lifts order structures on M to ι →₀ M.

instance Finsupp.instLE {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] :
LE (ι →₀ M)
Equations
    theorem Finsupp.le_def {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] {f g : ι →₀ M} :
    f g ∀ (i : ι), f i g i
    @[simp]
    theorem Finsupp.coe_le_coe {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] {f g : ι →₀ M} :
    f g f g
    def Finsupp.orderEmbeddingToFun {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] :
    (ι →₀ M) ↪o (ιM)

    The order on Finsupps over a partial order embeds into the order on functions

    Equations
      Instances For
        @[simp]
        theorem Finsupp.orderEmbeddingToFun_apply {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] (f : ι →₀ M) (a : ι) :
        instance Finsupp.preorder {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] :
        Equations
          theorem Finsupp.lt_def {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] {f g : ι →₀ M} :
          f < g f g ∃ (i : ι), f i < g i
          @[simp]
          theorem Finsupp.coe_lt_coe {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] {f g : ι →₀ M} :
          f < g f < g
          theorem Finsupp.coe_mono {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] :
          theorem Finsupp.coe_strictMono {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] :
          instance Finsupp.partialorder {ι : Type u_1} {M : Type u_2} [Zero M] [PartialOrder M] :
          Equations
            instance Finsupp.semilatticeInf {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeInf M] :
            Equations
              @[simp]
              theorem Finsupp.inf_apply {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeInf M] (f g : ι →₀ M) (i : ι) :
              (fg) i = f ig i
              instance Finsupp.semilatticeSup {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeSup M] :
              Equations
                @[simp]
                theorem Finsupp.sup_apply {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeSup M] (f g : ι →₀ M) (i : ι) :
                (fg) i = f ig i
                instance Finsupp.lattice {ι : Type u_1} {M : Type u_2} [Zero M] [Lattice M] :
                Equations
                  theorem Finsupp.support_inf_union_support_sup {ι : Type u_1} {M : Type u_2} [Zero M] [Lattice M] (f g : ι →₀ M) [DecidableEq ι] :
                  (fg).support (fg).support = f.support g.support
                  theorem Finsupp.support_sup_union_support_inf {ι : Type u_1} {M : Type u_2} [Zero M] [Lattice M] (f g : ι →₀ M) [DecidableEq ι] :
                  (fg).support (fg).support = f.support g.support