Documentation

Mathlib.RepresentationTheory.Homological.GroupHomology.LongExactSequence

Long exact sequence in group homology #

Given a commutative ring k and a group G, this file shows that a short exact sequence of k-linear G-representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0 induces a short exact sequence of complexes 0 ⟶ inhomogeneousChains X₁ ⟶ inhomogeneousChains X₂ ⟶ inhomogeneousChains X₃ ⟶ 0.

Since the homology of inhomogeneousChains Xᵢ is the group homology of Xᵢ, this allows us to specialize API about long exact sequences to group homology.

Main definitions #

@[reducible, inline]
noncomputable abbrev groupHomology.mapShortComplex₁ {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } (hij : j + 1 = i) :

The short complex Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁) ⟶ Hⱼ(G, X₂) associated to an exact sequence of representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0.

Equations
    Instances For
      @[reducible, inline]

      The short complex Hᵢ(G, X₁) ⟶ Hᵢ(G, X₂) ⟶ Hᵢ(G, X₃) associated to a short complex of representations X₁ ⟶ X₂ ⟶ X₃.

      Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev groupHomology.mapShortComplex₃ {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } (hij : j + 1 = i) :

          The short complex Hᵢ(G, X₂) ⟶ Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁) associated to an exact sequence of representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0.

          Equations
            Instances For
              theorem groupHomology.mapShortComplex₁_exact {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } (hij : j + 1 = i) :

              Exactness of Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁) ⟶ Hⱼ(G, X₂).

              Exactness of Hᵢ(G, X₁) ⟶ Hᵢ(G, X₂) ⟶ Hᵢ(G, X₃).

              theorem groupHomology.mapShortComplex₃_exact {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } (hij : j + 1 = i) :

              Exactness of Hᵢ(G, X₂) ⟶ Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁).

              @[reducible, inline]
              noncomputable abbrev groupHomology.δ {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) (i j : ) (hij : j + 1 = i) :

              The connecting homomorphism Hᵢ(G, X₃) ⟶ Hⱼ(G, X₁) associated to an exact sequence 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0 of representations.

              Equations
                Instances For
                  @[reducible, inline]
                  noncomputable abbrev groupHomology.cyclesMkOfCompEqD {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } {y : (Fin iG) →₀ X.X₂.V} {x : (Fin jG) →₀ X.X₁.V} (hx : (Finsupp.mapRange.linearMap (ModuleCat.Hom.hom X.f.hom)) x = (CategoryTheory.ConcreteCategory.hom ((inhomogeneousChains X.X₂).d i j)) y) :
                  (cycles X.X₁ j)

                  Given an exact sequence of G-representations 0 ⟶ X₁ ⟶f X₂ ⟶g X₃ ⟶ 0, this expresses an n-chain x : Gⁿ →₀ X₁ such that f ∘ x ∈ Bₙ(G, X₂) as a cycle. Stated for readability of δ_apply.

                  Equations
                    Instances For