Documentation

Mathlib.RepresentationTheory.Tannaka

Tannaka duality for finite groups #

In this file we prove Tannaka duality for finite groups.

The theorem can be formulated as follows: for any integral domain k, a finite group G can be recovered from FDRep k G, the monoidal category of finite dimensional k-linear representations of G, and the monoidal forgetful functor forget : FDRep k G ⥤ FGModuleCat k.

The main result is the isomorphism equiv : G ≃* Aut (forget k G).

Reference #

https://math.leidenuniv.nl/scripties/1bachCommelin.pdf

The monoidal forgetful functor from FDRep k G to FGModuleCat k.

Equations
    Instances For
      @[simp]
      theorem TannakaDuality.FiniteGroup.forget_obj {k G : Type u} [CommRing k] [Group G] (X : FDRep k G) :
      (forget k G).obj X = X.V
      @[simp]
      theorem TannakaDuality.FiniteGroup.forget_map {k G : Type u} [CommRing k] [Group G] (X Y : FDRep k G) (f : X Y) :
      (forget k G).map f = f.hom
      def TannakaDuality.FiniteGroup.equivApp {k G : Type u} [CommRing k] [Group G] (g : G) (X : FDRep k G) :
      X.V X.V

      Definition of equivHom g : Aut (forget k G) by its components.

      Equations
        Instances For
          @[simp]
          theorem TannakaDuality.FiniteGroup.equivApp_hom {k G : Type u} [CommRing k] [Group G] (g : G) (X : FDRep k G) :
          @[simp]
          theorem TannakaDuality.FiniteGroup.equivApp_inv {k G : Type u} [CommRing k] [Group G] (g : G) (X : FDRep k G) :

          The group homomorphism G →* Aut (forget k G) shown to be an isomorphism.

          Equations
            Instances For

              The representation on G → k induced by multiplication on the right in G.

              Equations
                Instances For
                  @[simp]
                  theorem TannakaDuality.FiniteGroup.rightRegular_apply {k G : Type u} [CommRing k] [Group G] (s t : G) (f : Gk) :
                  (rightRegular s) f t = f (t * s)

                  The representation on G → k induced by multiplication on the left in G.

                  Equations
                    Instances For
                      @[simp]
                      theorem TannakaDuality.FiniteGroup.leftRegular_apply {k G : Type u} [CommRing k] [Group G] (s t : G) (f : Gk) :
                      (leftRegular s) f t = f (s⁻¹ * t)

                      The right regular representation rightRegular on G → k as a FDRep k G.

                      Equations
                        Instances For
                          @[deprecated TannakaDuality.FiniteGroup.equivHom_injective (since := "2025-04-27")]

                          Alias of TannakaDuality.FiniteGroup.equivHom_injective.

                          The FDRep k G morphism induced by multiplication on G → k.

                          Equations
                            Instances For
                              theorem TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp {k G : Type u} [CommRing k] [Group G] [Finite G] (η : CategoryTheory.Aut (forget k G)) (f g : Gk) :
                              have α := ModuleCat.Hom.hom (η.hom.hom.app rightFDRep); α (f * g) = α f * α g

                              The rightFDRep component of η : Aut (forget k G) preserves multiplication

                              The rightFDRep component of η : Aut (forget k G) gives rise to an algebra morphism (G → k) →ₐ[k] (G → k).

                              Equations
                                Instances For
                                  def TannakaDuality.FiniteGroup.sumSMulInv {k G : Type u} [CommRing k] [Group G] [Fintype G] {X : FDRep k G} (v : X.V) :
                                  (Gk) →ₗ[k] X.V

                                  For v : X and G a finite group, the G-equivariant linear map from the right regular representation rightFDRep to X sending single 1 1 to v.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem TannakaDuality.FiniteGroup.sumSMulInv_apply {k G : Type u} [CommRing k] [Group G] [Fintype G] {X : FDRep k G} (v : X.V) (f : Gk) :
                                      (sumSMulInv v) f = s : G, f s (X.ρ s⁻¹) v
                                      @[simp]
                                      theorem TannakaDuality.FiniteGroup.sumSMulInv_single_id {k G : Type u} [CommRing k] [Group G] [Fintype G] [DecidableEq G] {X : FDRep k G} (v : X.V) :
                                      s : G, Pi.single 1 1 s (X.ρ s⁻¹) v = v
                                      def TannakaDuality.FiniteGroup.ofRightFDRep {k G : Type u} [CommRing k] [Group G] [Finite G] [Fintype G] (X : FDRep k G) (v : X.V) :

                                      For v : X and G a finite group, the representation morphism from the right regular representation rightFDRep to X sending single 1 1 to v.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem TannakaDuality.FiniteGroup.toRightFDRepComp_injective {k G : Type u} [CommRing k] [Group G] [Finite G] {η₁ η₂ : CategoryTheory.Aut (forget k G)} (h : η₁.hom.hom.app rightFDRep = η₂.hom.hom.app rightFDRep) :
                                          η₁ = η₂

                                          leftRegular as a morphism rightFDRep k G ⟶ rightFDRep k G in FDRep k G.

                                          Equations
                                            Instances For

                                              Tannaka duality for finite groups:

                                              A finite group G is isomorphic to Aut (forget k G), where k is any integral domain, and forget k G is the monoidal forgetful functor FDRep k G ⥤ FGModuleCat k G.

                                              Equations
                                                Instances For