Documentation

Mathlib.RingTheory.FractionalIdeal.Inverse

Inverse operator for fractional ideals #

This file defines the notation I⁻¹ where I is a not necessarily invertible fractional ideal. Note that this is somewhat misleading notation in case I is not invertible. The theorem that all nonzero fractional ideals are invertible in a Dedekind domain can be found in Mathlib/DedekindDomain/Ideal/Basic.lean.

Main definitions #

References #

Tags #

fractional ideal, invertible ideal

noncomputable instance FractionalIdeal.instInvNonZeroDivisors (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] :
Equations
    theorem FractionalIdeal.inv_eq (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {I : FractionalIdeal (nonZeroDivisors R₁) K} :
    I⁻¹ = 1 / I
    theorem FractionalIdeal.inv_zero' (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] :
    0⁻¹ = 0
    theorem FractionalIdeal.inv_nonzero (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {J : FractionalIdeal (nonZeroDivisors R₁) K} (h : J 0) :
    J⁻¹ = 1 / J,
    theorem FractionalIdeal.coe_inv_of_nonzero (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {J : FractionalIdeal (nonZeroDivisors R₁) K} (h : J 0) :
    theorem FractionalIdeal.mem_inv_iff {K : Type u_3} [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {I : FractionalIdeal (nonZeroDivisors R₁) K} (hI : I 0) {x : K} :
    x I⁻¹ yI, x * y 1
    theorem FractionalIdeal.inv_anti_mono {K : Type u_3} [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {I J : FractionalIdeal (nonZeroDivisors R₁) K} (hI : I 0) (hJ : J 0) (hIJ : I J) :
    theorem FractionalIdeal.le_self_mul_inv {K : Type u_3} [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {I : FractionalIdeal (nonZeroDivisors R₁) K} (hI : I 1) :
    I I * I⁻¹
    theorem FractionalIdeal.coe_ideal_le_self_mul_inv (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] (I : Ideal R₁) :
    I I * (↑I)⁻¹
    theorem FractionalIdeal.right_inverse_eq (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] (I J : FractionalIdeal (nonZeroDivisors R₁) K) (h : I * J = 1) :
    J = I⁻¹

    I⁻¹ is the inverse of I if I has an inverse.

    theorem FractionalIdeal.mul_inv_cancel_iff (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {I : FractionalIdeal (nonZeroDivisors R₁) K} :
    I * I⁻¹ = 1 ∃ (J : FractionalIdeal (nonZeroDivisors R₁) K), I * J = 1
    theorem FractionalIdeal.mul_inv_cancel_iff_isUnit (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {I : FractionalIdeal (nonZeroDivisors R₁) K} :
    I * I⁻¹ = 1 IsUnit I
    @[simp]
    theorem FractionalIdeal.map_inv (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {K' : Type u_5} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] (I : FractionalIdeal (nonZeroDivisors R₁) K) (h : K ≃ₐ[R₁] K') :
    map (↑h) I⁻¹ = (map (↑h) I)⁻¹
    @[simp]
    theorem FractionalIdeal.spanSingleton_inv (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] (x : K) :
    theorem FractionalIdeal.spanSingleton_div_self (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {x : K} (hx : x 0) :
    theorem FractionalIdeal.coe_ideal_span_singleton_div_self (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {x : R₁} (hx : x 0) :
    (Ideal.span {x}) / (Ideal.span {x}) = 1
    theorem FractionalIdeal.spanSingleton_mul_inv (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {x : K} (hx : x 0) :
    theorem FractionalIdeal.coe_ideal_span_singleton_mul_inv (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {x : R₁} (hx : x 0) :
    (Ideal.span {x}) * (↑(Ideal.span {x}))⁻¹ = 1
    theorem FractionalIdeal.spanSingleton_inv_mul (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {x : K} (hx : x 0) :
    theorem FractionalIdeal.coe_ideal_span_singleton_inv_mul (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {x : R₁} (hx : x 0) :
    (↑(Ideal.span {x}))⁻¹ * (Ideal.span {x}) = 1
    theorem FractionalIdeal.invertible_of_principal (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] (I : FractionalIdeal (nonZeroDivisors R₁) K) [(↑I).IsPrincipal] (h : I 0) :
    I * I⁻¹ = 1
    theorem FractionalIdeal.isPrincipal_inv (K : Type u_3) [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] (I : FractionalIdeal (nonZeroDivisors R₁) K) [(↑I).IsPrincipal] (h : I 0) :
    theorem FractionalIdeal.den_mem_inv {K : Type u_3} [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {I : FractionalIdeal (nonZeroDivisors R₁) K} (hI : I ) :
    (algebraMap R₁ K) I.den I⁻¹
    theorem FractionalIdeal.num_le_mul_inv {K : Type u_3} [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] (I : FractionalIdeal (nonZeroDivisors R₁) K) :
    I.num I * I⁻¹
    theorem FractionalIdeal.bot_lt_mul_inv {K : Type u_3} [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] {I : FractionalIdeal (nonZeroDivisors R₁) K} (hI : I ) :
    noncomputable instance FractionalIdeal.instInvOneClassNonZeroDivisors {K : Type u_3} [Field K] {R₁ : Type u_4} [CommRing R₁] [IsDomain R₁] [Algebra R₁ K] [IsFractionRing R₁ K] :
    Equations