Documentation

Mathlib.RingTheory.HahnSeries.Summable

Summable families of Hahn Series #

We introduce a notion of formal summability for families of Hahn series, and define a formal sum function. This theory is applied to characterize invertible Hahn series whose coefficients are in a commutative domain.

Main Definitions #

Main results #

TODO #

References #

structure HahnSeries.SummableFamily (Γ : Type u_8) (R : Type u_9) [PartialOrder Γ] [AddCommMonoid R] (α : Type u_7) :
Type (max (max u_7 u_8) u_9)

A family of Hahn series whose formal coefficient-wise sum is a Hahn series. For each coefficient of the sum to be well-defined, we require that only finitely many series are nonzero at any given coefficient. For the formal sum to be a Hahn series, we require that the union of the supports of the constituent series is partially well-ordered.

Instances For
    instance HahnSeries.SummableFamily.instFunLike {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] :
    FunLike (SummableFamily Γ R α) α (HahnSeries Γ R)
    Equations
      @[simp]
      theorem HahnSeries.SummableFamily.coe_mk {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (toFun : αHahnSeries Γ R) (h1 : (⋃ (a : α), (toFun a).support).IsPWO) (h2 : ∀ (g : Γ), {a : α | (toFun a).coeff g 0}.Finite) :
      { toFun := toFun, isPWO_iUnion_support' := h1, finite_co_support' := h2 } = toFun
      theorem HahnSeries.SummableFamily.isPWO_iUnion_support {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) :
      (⋃ (a : α), (s a).support).IsPWO
      theorem HahnSeries.SummableFamily.finite_co_support {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (g : Γ) :
      (Function.support fun (a : α) => (s a).coeff g).Finite
      theorem HahnSeries.SummableFamily.ext {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s t : SummableFamily Γ R α} (h : ∀ (a : α), s a = t a) :
      s = t
      theorem HahnSeries.SummableFamily.ext_iff {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s t : SummableFamily Γ R α} :
      s = t ∀ (a : α), s a = t a
      instance HahnSeries.SummableFamily.instAdd {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] :
      Equations
        instance HahnSeries.SummableFamily.instZero {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] :
        Equations
          instance HahnSeries.SummableFamily.instInhabited {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] :
          Equations
            @[simp]
            theorem HahnSeries.SummableFamily.coe_add {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (s t : SummableFamily Γ R α) :
            ⇑(s + t) = s + t
            theorem HahnSeries.SummableFamily.add_apply {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s t : SummableFamily Γ R α} {a : α} :
            (s + t) a = s a + t a
            @[simp]
            theorem HahnSeries.SummableFamily.coe_zero {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] :
            0 = 0
            theorem HahnSeries.SummableFamily.zero_apply {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {a : α} :
            0 a = 0
            instance HahnSeries.SummableFamily.instSMul {Γ : Type u_1} {R : Type u_3} {β : Type u_6} [PartialOrder Γ] [AddCommMonoid R] {M : Type u_7} [SMulZeroClass M R] :
            SMul M (SummableFamily Γ R β)
            Equations
              @[simp]
              theorem HahnSeries.SummableFamily.coe_smul' {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {M : Type u_7} [SMulZeroClass M R] (m : M) (s : SummableFamily Γ R α) :
              ⇑(m s) = m s
              theorem HahnSeries.SummableFamily.smul_apply' {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {M : Type u_7} [SMulZeroClass M R] (m : M) (s : SummableFamily Γ R α) (a : α) :
              (m s) a = m s a
              Equations
                def HahnSeries.SummableFamily.coeff {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (g : Γ) :
                α →₀ R

                The coefficient function of a summable family, as a finsupp on the parameter type.

                Equations
                  Instances For
                    @[simp]
                    theorem HahnSeries.SummableFamily.coeff_toFun {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (g : Γ) (a : α) :
                    (s.coeff g) a = (s a).coeff g
                    @[simp]
                    theorem HahnSeries.SummableFamily.coeff_support {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (g : Γ) :
                    @[simp]
                    theorem HahnSeries.SummableFamily.coeff_def {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (a : α) (g : Γ) :
                    (s.coeff g) a = (s a).coeff g
                    def HahnSeries.SummableFamily.hsum {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) :

                    The infinite sum of a SummableFamily of Hahn series.

                    Equations
                      Instances For
                        @[simp]
                        theorem HahnSeries.SummableFamily.coeff_hsum {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s : SummableFamily Γ R α} {g : Γ} :
                        s.hsum.coeff g = ∑ᶠ (i : α), (s i).coeff g
                        @[deprecated HahnSeries.SummableFamily.coeff_hsum (since := "2025-01-31")]
                        theorem HahnSeries.SummableFamily.hsum_coeff {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s : SummableFamily Γ R α} {g : Γ} :
                        s.hsum.coeff g = ∑ᶠ (i : α), (s i).coeff g

                        Alias of HahnSeries.SummableFamily.coeff_hsum.

                        @[simp]
                        theorem HahnSeries.SummableFamily.hsum_zero {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] :
                        hsum 0 = 0
                        theorem HahnSeries.SummableFamily.support_hsum_subset {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s : SummableFamily Γ R α} :
                        s.hsum.support ⋃ (a : α), (s a).support
                        @[simp]
                        theorem HahnSeries.SummableFamily.hsum_add {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s t : SummableFamily Γ R α} :
                        (s + t).hsum = s.hsum + t.hsum
                        theorem HahnSeries.SummableFamily.coeff_hsum_eq_sum_of_subset {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s : SummableFamily Γ R α} {g : Γ} {t : Finset α} (h : {a : α | (s a).coeff g 0} t) :
                        s.hsum.coeff g = it, (s i).coeff g
                        @[deprecated HahnSeries.SummableFamily.coeff_hsum_eq_sum_of_subset (since := "2025-01-31")]
                        theorem HahnSeries.SummableFamily.hsum_coeff_eq_sum_of_subset {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s : SummableFamily Γ R α} {g : Γ} {t : Finset α} (h : {a : α | (s a).coeff g 0} t) :
                        s.hsum.coeff g = it, (s i).coeff g

                        Alias of HahnSeries.SummableFamily.coeff_hsum_eq_sum_of_subset.

                        theorem HahnSeries.SummableFamily.coeff_hsum_eq_sum {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s : SummableFamily Γ R α} {g : Γ} :
                        s.hsum.coeff g = i(s.coeff g).support, (s i).coeff g
                        @[deprecated HahnSeries.SummableFamily.coeff_hsum_eq_sum (since := "2025-01-31")]
                        theorem HahnSeries.SummableFamily.hsum_coeff_eq_sum {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {s : SummableFamily Γ R α} {g : Γ} :
                        s.hsum.coeff g = i(s.coeff g).support, (s i).coeff g

                        Alias of HahnSeries.SummableFamily.coeff_hsum_eq_sum.

                        def HahnSeries.SummableFamily.single {Γ : Type u_1} {R : Type u_3} [PartialOrder Γ] [AddCommMonoid R] {ι : Type u_7} [DecidableEq ι] (i : ι) (x : HahnSeries Γ R) :

                        The summable family made of a single Hahn series.

                        Equations
                          Instances For
                            @[simp]
                            theorem HahnSeries.SummableFamily.single_toFun {Γ : Type u_1} {R : Type u_3} [PartialOrder Γ] [AddCommMonoid R] {ι : Type u_7} [DecidableEq ι] (i : ι) (x : HahnSeries Γ R) (j : ι) :
                            (single i x) j = Pi.single i x j
                            @[simp]
                            theorem HahnSeries.SummableFamily.hsum_single {Γ : Type u_1} {R : Type u_3} [PartialOrder Γ] [AddCommMonoid R] {ι : Type u_7} [DecidableEq ι] (i : ι) (x : HahnSeries Γ R) :
                            (single i x).hsum = x
                            def HahnSeries.SummableFamily.const {Γ : Type u_1} {R : Type u_3} [PartialOrder Γ] [AddCommMonoid R] (ι : Type u_7) [Finite ι] (x : HahnSeries Γ R) :

                            The summable family made of a constant Hahn series.

                            Equations
                              Instances For
                                @[simp]
                                theorem HahnSeries.SummableFamily.const_toFun {Γ : Type u_1} {R : Type u_3} [PartialOrder Γ] [AddCommMonoid R] (ι : Type u_7) [Finite ι] (x : HahnSeries Γ R) (x✝ : ι) :
                                (const ι x) x✝ = x
                                @[simp]
                                theorem HahnSeries.SummableFamily.hsum_unique {Γ : Type u_1} {R : Type u_3} [PartialOrder Γ] [AddCommMonoid R] {ι : Type u_7} [Unique ι] (x : SummableFamily Γ R ι) :
                                def HahnSeries.SummableFamily.Equiv {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [AddCommMonoid R] (e : α β) (s : SummableFamily Γ R α) :

                                A summable family induced by an equivalence of the parametrizing type.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem HahnSeries.SummableFamily.Equiv_toFun {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [AddCommMonoid R] (e : α β) (s : SummableFamily Γ R α) (b : β) :
                                    (Equiv e s) b = s (e.symm b)
                                    @[simp]
                                    theorem HahnSeries.SummableFamily.hsum_equiv {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [AddCommMonoid R] (e : α β) (s : SummableFamily Γ R α) :
                                    (Equiv e s).hsum = s.hsum
                                    def HahnSeries.SummableFamily.smulFamily {Γ : Type u_1} {R : Type u_3} {V : Type u_4} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] [AddCommMonoid V] [SMulWithZero R V] (f : αR) (s : SummableFamily Γ V α) :

                                    The summable family given by multiplying every series in a summable family by a scalar.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem HahnSeries.SummableFamily.smulFamily_toFun {Γ : Type u_1} {R : Type u_3} {V : Type u_4} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] [AddCommMonoid V] [SMulWithZero R V] (f : αR) (s : SummableFamily Γ V α) (a : α) :
                                        (smulFamily f s) a = f a s a
                                        theorem HahnSeries.SummableFamily.hsum_smulFamily {Γ : Type u_1} {R : Type u_3} {V : Type u_4} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] [AddCommMonoid V] [SMulWithZero R V] (f : αR) (s : SummableFamily Γ V α) (g : Γ) :
                                        (smulFamily f s).hsum.coeff g = ∑ᶠ (i : α), f i (s i).coeff g
                                        instance HahnSeries.SummableFamily.instNeg {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommGroup R] :
                                        Equations
                                          @[simp]
                                          theorem HahnSeries.SummableFamily.coe_neg {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommGroup R] (s : SummableFamily Γ R α) :
                                          ⇑(-s) = -s
                                          theorem HahnSeries.SummableFamily.neg_apply {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommGroup R] {s : SummableFamily Γ R α} {a : α} :
                                          (-s) a = -s a
                                          instance HahnSeries.SummableFamily.instSub {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommGroup R] :
                                          Equations
                                            @[simp]
                                            theorem HahnSeries.SummableFamily.coe_sub {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommGroup R] (s t : SummableFamily Γ R α) :
                                            ⇑(s - t) = s - t
                                            theorem HahnSeries.SummableFamily.sub_apply {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommGroup R] {s t : SummableFamily Γ R α} {a : α} :
                                            (s - t) a = s a - t a
                                            Equations
                                              theorem HahnSeries.SummableFamily.smul_support_subset_prod {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [AddCommMonoid R] [SMulWithZero R V] (s : SummableFamily Γ R α) (t : SummableFamily Γ' V β) (gh : Γ × Γ') :
                                              (Function.support fun (i : α × β) => (s i.1).coeff gh.1 (t i.2).coeff gh.2) .toFinset
                                              theorem HahnSeries.SummableFamily.smul_support_finite {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [AddCommMonoid R] [SMulWithZero R V] (s : SummableFamily Γ R α) (t : SummableFamily Γ' V β) (gh : Γ × Γ') :
                                              (Function.support fun (i : α × β) => (s i.1).coeff gh.1 (t i.2).coeff gh.2).Finite
                                              theorem HahnSeries.SummableFamily.isPWO_iUnion_support_prod_smul {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [AddCommMonoid R] [SMulWithZero R V] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] {s : αHahnSeries Γ R} {t : βHahnSeries Γ' V} (hs : (⋃ (a : α), (s a).support).IsPWO) (ht : (⋃ (b : β), (t b).support).IsPWO) :
                                              (⋃ (a : α × β), ((fun (a : α × β) => (HahnModule.of R).symm (s a.1 (HahnModule.of R) (t a.2))) a).support).IsPWO
                                              theorem HahnSeries.SummableFamily.finite_co_support_prod_smul {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [AddCommMonoid R] [SMulWithZero R V] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] (s : SummableFamily Γ R α) (t : SummableFamily Γ' V β) (g : Γ') :
                                              Finite {ab : α × β | ((fun (ab : α × β) => (HahnModule.of R).symm (s ab.1 (HahnModule.of R) (t ab.2))) ab).coeff g 0}
                                              def HahnSeries.SummableFamily.smul {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [AddCommMonoid R] [SMulWithZero R V] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] (s : SummableFamily Γ R α) (t : SummableFamily Γ' V β) :
                                              SummableFamily Γ' V (α × β)

                                              An elementwise scalar multiplication of one summable family on another.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem HahnSeries.SummableFamily.smul_toFun {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [AddCommMonoid R] [SMulWithZero R V] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] (s : SummableFamily Γ R α) (t : SummableFamily Γ' V β) (ab : α × β) :
                                                  (s.smul t) ab = (HahnModule.of R).symm (s ab.1 (HahnModule.of R) (t ab.2))
                                                  theorem HahnSeries.SummableFamily.sum_vAddAntidiagonal_eq {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [AddCommMonoid R] [SMulWithZero R V] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] (s : SummableFamily Γ R α) (t : SummableFamily Γ' V β) (g : Γ') (a : α × β) :
                                                  xFinset.VAddAntidiagonal g, (s a.1).coeff x.1 (t a.2).coeff x.2 = xFinset.VAddAntidiagonal g, (s a.1).coeff x.1 (t a.2).coeff x.2
                                                  theorem HahnSeries.SummableFamily.coeff_smul {Γ : Type u_1} {Γ' : Type u_2} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] {R : Type u_7} {V : Type u_8} [Semiring R] [AddCommMonoid V] [Module R V] (s : SummableFamily Γ R α) (t : SummableFamily Γ' V β) (g : Γ') :
                                                  (s.smul t).hsum.coeff g = ghFinset.VAddAntidiagonal g, s.hsum.coeff gh.1 t.hsum.coeff gh.2
                                                  theorem HahnSeries.SummableFamily.smul_hsum {Γ : Type u_1} {Γ' : Type u_2} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] {R : Type u_7} {V : Type u_8} [Semiring R] [AddCommMonoid V] [Module R V] (s : SummableFamily Γ R α) (t : SummableFamily Γ' V β) :
                                                  instance HahnSeries.SummableFamily.instSMulOfSMulWithZero {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] [AddCommMonoid R] [SMulWithZero R V] :
                                                  SMul (HahnSeries Γ R) (SummableFamily Γ' V β)
                                                  Equations
                                                    theorem HahnSeries.SummableFamily.smul_eq {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {β : Type u_6} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [AddCommMonoid R] [SMulWithZero R V] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] {x : HahnSeries Γ R} {t : SummableFamily Γ' V β} :
                                                    @[simp]
                                                    theorem HahnSeries.SummableFamily.smul_apply {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {α : Type u_5} [PartialOrder Γ] [PartialOrder Γ'] [AddCommMonoid V] [AddCommMonoid R] [SMulWithZero R V] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] {x : HahnSeries Γ R} {s : SummableFamily Γ' V α} {a : α} :
                                                    (x s) a = (HahnModule.of R).symm (x (HahnModule.of R) (s a))
                                                    @[simp]
                                                    theorem HahnSeries.SummableFamily.hsum_smul_module {Γ : Type u_1} {Γ' : Type u_2} {α : Type u_5} [PartialOrder Γ] [PartialOrder Γ'] [VAdd Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] {R : Type u_7} {V : Type u_8} [Semiring R] [AddCommMonoid V] [Module R V] {x : HahnSeries Γ R} {s : SummableFamily Γ' V α} :
                                                    instance HahnSeries.SummableFamily.instModule {Γ : Type u_1} {Γ' : Type u_2} {R : Type u_3} {V : Type u_4} {α : Type u_5} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [PartialOrder Γ'] [AddAction Γ Γ'] [IsOrderedCancelVAdd Γ Γ'] [Semiring R] [AddCommMonoid V] [Module R V] :
                                                    Module (HahnSeries Γ R) (SummableFamily Γ' V α)
                                                    Equations
                                                      theorem HahnSeries.SummableFamily.hsum_smul {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] {x : HahnSeries Γ R} {s : SummableFamily Γ R α} :
                                                      (x s).hsum = x * s.hsum

                                                      The summation of a summable_family as a LinearMap.

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem HahnSeries.SummableFamily.lsum_apply {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] (s : SummableFamily Γ R α) :
                                                          lsum s = s.hsum
                                                          @[simp]
                                                          theorem HahnSeries.SummableFamily.hsum_sub {Γ : Type u_1} {α : Type u_5} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] {R : Type u_7} [Ring R] {s t : SummableFamily Γ R α} :
                                                          (s - t).hsum = s.hsum - t.hsum
                                                          theorem HahnSeries.SummableFamily.isPWO_iUnion_support_prod_mul {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] {s : αHahnSeries Γ R} {t : βHahnSeries Γ R} (hs : (⋃ (a : α), (s a).support).IsPWO) (ht : (⋃ (b : β), (t b).support).IsPWO) :
                                                          (⋃ (a : α × β), ((fun (a : α × β) => s a.1 * t a.2) a).support).IsPWO
                                                          theorem HahnSeries.SummableFamily.finite_co_support_prod_mul {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] (s : SummableFamily Γ R α) (t : SummableFamily Γ R β) (g : Γ) :
                                                          Finite {a : α × β | ((fun (a : α × β) => s a.1 * t a.2) a).coeff g 0}
                                                          def HahnSeries.SummableFamily.mul {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] (s : SummableFamily Γ R α) (t : SummableFamily Γ R β) :
                                                          SummableFamily Γ R (α × β)

                                                          A summable family given by pointwise multiplication of a pair of summable families.

                                                          Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem HahnSeries.SummableFamily.mul_toFun {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] (s : SummableFamily Γ R α) (t : SummableFamily Γ R β) (a : α × β) :
                                                              (s.mul t) a = s a.1 * t a.2
                                                              theorem HahnSeries.SummableFamily.mul_eq_smul {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] (s : SummableFamily Γ R α) (t : SummableFamily Γ R β) :
                                                              s.mul t = s.smul t
                                                              theorem HahnSeries.SummableFamily.coeff_hsum_mul {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] (s : SummableFamily Γ R α) (t : SummableFamily Γ R β) (g : Γ) :
                                                              (s.mul t).hsum.coeff g = ghFinset.addAntidiagonal g, s.hsum.coeff gh.1 * t.hsum.coeff gh.2
                                                              @[deprecated HahnSeries.SummableFamily.coeff_hsum_mul (since := "2025-01-31")]
                                                              theorem HahnSeries.SummableFamily.mul_coeff {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] (s : SummableFamily Γ R α) (t : SummableFamily Γ R β) (g : Γ) :
                                                              (s.mul t).hsum.coeff g = ghFinset.addAntidiagonal g, s.hsum.coeff gh.1 * t.hsum.coeff gh.2

                                                              Alias of HahnSeries.SummableFamily.coeff_hsum_mul.

                                                              theorem HahnSeries.SummableFamily.hsum_mul {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [Semiring R] (s : SummableFamily Γ R α) (t : SummableFamily Γ R β) :
                                                              (s.mul t).hsum = s.hsum * t.hsum
                                                              def HahnSeries.SummableFamily.ofFinsupp {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] (f : α →₀ HahnSeries Γ R) :

                                                              A family with only finitely many nonzero elements is summable.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem HahnSeries.SummableFamily.coe_ofFinsupp {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {f : α →₀ HahnSeries Γ R} :
                                                                  (ofFinsupp f) = f
                                                                  @[simp]
                                                                  theorem HahnSeries.SummableFamily.hsum_ofFinsupp {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [PartialOrder Γ] [AddCommMonoid R] {f : α →₀ HahnSeries Γ R} :
                                                                  (ofFinsupp f).hsum = f.sum fun (x : α) => id
                                                                  def HahnSeries.SummableFamily.embDomain {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (f : α β) :

                                                                  A summable family can be reindexed by an embedding without changing its sum.

                                                                  Equations
                                                                    Instances For
                                                                      theorem HahnSeries.SummableFamily.embDomain_apply {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (f : α β) {b : β} :
                                                                      (s.embDomain f) b = if h : b Set.range f then s (Classical.choose h) else 0
                                                                      @[simp]
                                                                      theorem HahnSeries.SummableFamily.embDomain_image {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (f : α β) {a : α} :
                                                                      (s.embDomain f) (f a) = s a
                                                                      @[simp]
                                                                      theorem HahnSeries.SummableFamily.embDomain_notin_range {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (f : α β) {b : β} (h : bSet.range f) :
                                                                      (s.embDomain f) b = 0
                                                                      @[simp]
                                                                      theorem HahnSeries.SummableFamily.hsum_embDomain {Γ : Type u_1} {R : Type u_3} {α : Type u_5} {β : Type u_6} [PartialOrder Γ] [AddCommMonoid R] (s : SummableFamily Γ R α) (f : α β) :
                                                                      theorem HahnSeries.SummableFamily.pow_finite_co_support {Γ : Type u_1} {R : Type u_3} [AddCommMonoid Γ] [LinearOrder Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] {x : HahnSeries Γ R} (hx : 0 < x.orderTop) (g : Γ) :
                                                                      {a : | ((fun (n : ) => x ^ n) a).coeff g 0}.Finite

                                                                      A summable family of powers of a Hahn series x. If x has non-positive orderTop, then return a junk value given by pretending x = 0.

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem HahnSeries.SummableFamily.powers_toFun {Γ : Type u_1} {R : Type u_3} [AddCommMonoid Γ] [LinearOrder Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] (x : HahnSeries Γ R) (n : ) :
                                                                          (powers x) n = (if 0 < x.orderTop then x else 0) ^ n
                                                                          theorem HahnSeries.SummableFamily.powers_of_orderTop_pos {Γ : Type u_1} {R : Type u_3} [AddCommMonoid Γ] [LinearOrder Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] {x : HahnSeries Γ R} (hx : 0 < x.orderTop) (n : ) :
                                                                          (powers x) n = x ^ n
                                                                          @[simp]
                                                                          theorem HahnSeries.SummableFamily.coe_powers {Γ : Type u_1} {R : Type u_3} [AddCommMonoid Γ] [LinearOrder Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] {x : HahnSeries Γ R} (hx : 0 < x.orderTop) :
                                                                          (powers x) = HPow.hPow x
                                                                          theorem HahnSeries.one_minus_single_neg_mul {Γ : Type u_1} {R : Type u_3} [AddCommMonoid Γ] [LinearOrder Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] {x y : HahnSeries Γ R} {r : R} (hr : r * x.leadingCoeff = 1) (hxy : x = y + (single x.order) x.leadingCoeff) (oinv : Γ) (hxo : oinv + x.order = 0) :
                                                                          1 - (single oinv) r * x = -((single oinv) r * y)
                                                                          theorem HahnSeries.unit_aux {Γ : Type u_1} {R : Type u_3} [AddCommMonoid Γ] [LinearOrder Γ] [IsOrderedCancelAddMonoid Γ] [CommRing R] (x : HahnSeries Γ R) {r : R} (hr : r * x.leadingCoeff = 1) (oinv : Γ) (hxo : oinv + x.order = 0) :
                                                                          0 < (1 - (single oinv) r * x).orderTop
                                                                          Equations
                                                                            @[simp]
                                                                            theorem HahnSeries.inv_single {Γ : Type u_1} {R : Type u_3} [AddCommGroup Γ] [LinearOrder Γ] [IsOrderedAddMonoid Γ] [Field R] (a : Γ) (r : R) :
                                                                            ((single a) r)⁻¹ = (single (-a)) r⁻¹
                                                                            @[simp]
                                                                            theorem HahnSeries.single_div_single {Γ : Type u_1} {R : Type u_3} [AddCommGroup Γ] [LinearOrder Γ] [IsOrderedAddMonoid Γ] [Field R] (a b : Γ) (r s : R) :
                                                                            (single a) r / (single b) s = (single (a - b)) (r / s)
                                                                            instance HahnSeries.instField {Γ : Type u_1} {R : Type u_3} [AddCommGroup Γ] [LinearOrder Γ] [IsOrderedAddMonoid Γ] [Field R] :
                                                                            Equations