Documentation

Mathlib.RingTheory.Ideal.Cotangent

The module I ⧸ I ^ 2 #

In this file, we provide special API support for the module I ⧸ I ^ 2. The official definition is a quotient module of I, but the alternative definition as an ideal of R ⧸ I ^ 2 is also given, and the two are R-equivalent as in Ideal.cotangentEquivIdeal.

Additional support is also given to the cotangent space m ⧸ m ^ 2 of a local ring.

def Ideal.Cotangent {R : Type u} [CommRing R] (I : Ideal R) :

I ⧸ I ^ 2 as a quotient of I.

Equations
    Instances For
      instance Ideal.cotangentModule {R : Type u} [CommRing R] (I : Ideal R) :
      Equations
        Equations
          instance Ideal.Cotangent.moduleOfTower {R : Type u} {S : Type v} [CommRing R] [CommSemiring S] [Algebra S R] (I : Ideal R) :
          Equations
            instance Ideal.Cotangent.isScalarTower {R : Type u} {S : Type v} {S' : Type w} [CommRing R] [CommSemiring S] [Algebra S R] [CommSemiring S'] [Algebra S' R] [Algebra S S'] [IsScalarTower S S' R] (I : Ideal R) :
            def Ideal.toCotangent {R : Type u} [CommRing R] (I : Ideal R) :

            The quotient map from I to I ⧸ I ^ 2.

            Equations
              Instances For
                theorem Ideal.toCotangent_apply {R : Type u} [CommRing R] (I : Ideal R) (a✝ : I) :
                theorem Ideal.mem_toCotangent_ker {R : Type u} [CommRing R] (I : Ideal R) {x : I} :
                theorem Ideal.toCotangent_eq {R : Type u} [CommRing R] (I : Ideal R) {x y : I} :
                I.toCotangent x = I.toCotangent y x - y I ^ 2
                theorem Ideal.toCotangent_eq_zero {R : Type u} [CommRing R] (I : Ideal R) (x : I) :
                I.toCotangent x = 0 x I ^ 2

                The inclusion map I ⧸ I ^ 2 to R ⧸ I ^ 2.

                Equations
                  Instances For
                    @[simp]
                    theorem Ideal.Cotangent.smul_eq_zero_of_mem {R : Type u} [CommRing R] {I : Ideal R} {x : R} (hx : x I) (m : I.Cotangent) :
                    x m = 0
                    def Ideal.cotangentIdeal {R : Type u} [CommRing R] (I : Ideal R) :
                    Ideal (R I ^ 2)

                    I ⧸ I ^ 2 as an ideal of R ⧸ I ^ 2.

                    Equations
                      Instances For
                        theorem Ideal.mk_mem_cotangentIdeal {R : Type u} [CommRing R] {I : Ideal R} {x : R} :
                        noncomputable def Ideal.cotangentEquivIdeal {R : Type u} [CommRing R] (I : Ideal R) :

                        The equivalence of the two definitions of I / I ^ 2, either as the quotient of I or the ideal of R / I ^ 2.

                        Equations
                          Instances For
                            theorem Ideal.cotangentEquivIdeal_symm_apply {R : Type u} [CommRing R] (I : Ideal R) (x : R) (hx : x I) :
                            def AlgHom.kerSquareLift {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :

                            The lift of f : A →ₐ[R] B to A ⧸ J ^ 2 →ₐ[R] B with J being the kernel of f.

                            Equations
                              Instances For
                                instance Ideal.Algebra.kerSquareLift {R : Type u} [CommRing R] {A : Type u_1} [CommRing A] [Algebra R A] :
                                Equations
                                  def Ideal.quotCotangent {R : Type u} [CommRing R] (I : Ideal R) :

                                  The quotient ring of I ⧸ I ^ 2 is R ⧸ I.

                                  Equations
                                    Instances For
                                      def Ideal.mapCotangent {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I₁ : Ideal A) (I₂ : Ideal B) (f : A →ₐ[R] B) (h : I₁ comap f I₂) :

                                      The map I/I² → J/J² if I ≤ f⁻¹(J).

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem Ideal.mapCotangent_toCotangent {R : Type u} [CommRing R] {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I₁ : Ideal A) (I₂ : Ideal B) (f : A →ₐ[R] B) (h : I₁ comap f I₂) (x : I₁) :
                                          (I₁.mapCotangent I₂ f h) (I₁.toCotangent x) = I₂.toCotangent f x,
                                          @[reducible, inline]

                                          The A ⧸ I-vector space I ⧸ I ^ 2.

                                          Equations
                                            Instances For