Documentation

Mathlib.RingTheory.Regular.Category

Categorical constructions for IsSMulRegular #

theorem LinearMap.exact_smul_id_smul_top_mkQ {R : Type u} [CommRing R] (M : Type v) [AddCommGroup M] [Module R M] (r : R) :
Function.Exact ⇑(r id) (r ).mkQ

The short (exact) complex M → M → M⧸xM obtain from the scalar multiple of x : R on M.

Equations
    Instances For
      @[simp]
      theorem ModuleCat.smulShortComplex_X₂ {R : Type u} [CommRing R] (M : ModuleCat R) (r : R) :
      @[simp]
      @[simp]
      @[simp]
      theorem ModuleCat.smulShortComplex_X₁ {R : Type u} [CommRing R] (M : ModuleCat R) (r : R) :
      @[simp]
      theorem ModuleCat.smulShortComplex_g {R : Type u} [CommRing R] (M : ModuleCat R) (r : R) :