Documentation

Mathlib.RingTheory.RingInvo

Ring involutions #

This file defines a ring involution as a structure extending R ≃+* Rᵐᵒᵖ, with the additional fact f.involution : (f (f x).unop).unop = x.

Notations #

We provide a coercion to a function R → Rᵐᵒᵖ.

References #

Tags #

Ring involution

structure RingInvo (R : Type u_2) [Semiring R] extends R ≃+* Rᵐᵒᵖ :
Type u_2

A ring involution

Instances For
    class RingInvoClass (F : Type u_3) (R : Type u_4) [Semiring R] [EquivLike F R Rᵐᵒᵖ] extends RingEquivClass F R Rᵐᵒᵖ :

    RingInvoClass F R states that F is a type of ring involutions. You should extend this class when you extend RingInvo.

    Instances
      def RingInvoClass.toRingInvo {F : Type u_1} {R : Type u_3} [Semiring R] [EquivLike F R Rᵐᵒᵖ] [RingInvoClass F R] (f : F) :

      Turn an element of a type F satisfying RingInvoClass F R into an actual RingInvo. This is declared as the default coercion from F to RingInvo R.

      Equations
        Instances For

          Any type satisfying RingInvoClass can be cast into RingInvo via RingInvoClass.toRingInvo.

          Equations
            def RingInvo.mk' {R : Type u_2} [Semiring R] (f : R →+* Rᵐᵒᵖ) (involution : ∀ (r : R), MulOpposite.unop (f (MulOpposite.unop (f r))) = r) :

            Construct a ring involution from a ring homomorphism.

            Equations
              Instances For
                @[simp]
                theorem RingInvo.involution {R : Type u_2} [Semiring R] (f : RingInvo R) (x : R) :
                theorem RingInvo.coe_ringEquiv {R : Type u_2} [Semiring R] (f : RingInvo R) (a : R) :
                f a = f a
                theorem RingInvo.map_eq_zero_iff {R : Type u_2} [Semiring R] (f : RingInvo R) {x : R} :
                f x = 0 x = 0
                def RingInvo.id (R : Type u_2) [CommRing R] :

                The identity function of a CommRing is a ring involution.

                Equations
                  Instances For
                    Equations