Documentation

Mathlib.RingTheory.Valuation.Quotient

The valuation on a quotient ring #

The support of a valuation v : Valuation R Γ₀ is supp v. If J is an ideal of R with h : J ⊆ supp v then the induced valuation on R / J = Ideal.Quotient J is onQuot v h.

def Valuation.onQuotVal {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
R JΓ₀

If hJ : J ⊆ supp v then onQuotVal hJ is the induced function on R / J as a function. Note: it's just the function; the valuation is onQuot hJ.

Equations
    Instances For
      def Valuation.onQuot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
      Valuation (R J) Γ₀

      The extension of valuation v on R to valuation on R / J if J ⊆ supp v.

      Equations
        Instances For
          @[simp]
          theorem Valuation.onQuot_comap_eq {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
          theorem Valuation.self_le_supp_comap {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (J : Ideal R) (v : Valuation (R J) Γ₀) :
          @[simp]
          theorem Valuation.comap_onQuot_eq {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (J : Ideal R) (v : Valuation (R J) Γ₀) :
          theorem Valuation.supp_quot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :

          The quotient valuation on R / J has support (supp v) / J if J ⊆ supp v.

          theorem Valuation.supp_quot_supp {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :
          (v.onQuot ).supp = 0
          def AddValuation.onQuotVal {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
          R JΓ₀

          If hJ : J ⊆ supp v then onQuotVal hJ is the induced function on R / J as a function. Note: it's just the function; the valuation is onQuot hJ.

          Equations
            Instances For
              def AddValuation.onQuot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
              AddValuation (R J) Γ₀

              The extension of valuation v on R to valuation on R / J if J ⊆ supp v.

              Equations
                Instances For
                  @[simp]
                  theorem AddValuation.onQuot_comap_eq {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
                  theorem AddValuation.comap_supp {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {S : Type u_3} [CommRing S] (f : S →+* R) :
                  theorem AddValuation.self_le_supp_comap {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (J : Ideal R) (v : AddValuation (R J) Γ₀) :
                  @[simp]
                  theorem AddValuation.comap_onQuot_eq {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (J : Ideal R) (v : AddValuation (R J) Γ₀) :
                  theorem AddValuation.supp_quot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :

                  The quotient valuation on R / J has support (supp v) / J if J ⊆ supp v.

                  theorem AddValuation.supp_quot_supp {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) :