Documentation

Mathlib.Algebra.Order.GroupWithZero.Canonical

Linearly ordered commutative groups and monoids with a zero element adjoined #

This file sets up a special class of linearly ordered commutative monoids that show up as the target of so-called “valuations” in algebraic number theory.

Usually, in the informal literature, these objects are constructed by taking a linearly ordered commutative group Γ and formally adjoining a zero element: Γ ∪ {0}.

The disadvantage is that a type such as NNReal is not of that form, whereas it is a very common target for valuations. The solutions is to use a typeclass, and that is exactly what we do in this file.

A linearly ordered commutative monoid with a zero element.

Instances

    A linearly ordered commutative group with a zero element.

    Instances
      @[reducible, inline]
      abbrev Function.Injective.linearOrderedCommMonoidWithZero {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {β : Type u_3} [Zero β] [Bot β] [One β] [Mul β] [Pow β ] [Max β] [Min β] (f : βα) (hf : Injective f) (zero : f 0 = 0) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (hsup : ∀ (x y : β), f (xy) = max (f x) (f y)) (hinf : ∀ (x y : β), f (xy) = min (f x) (f y)) (bot : f = ) :

      Pullback a LinearOrderedCommMonoidWithZero under an injective map. See note [reducible non-instances].

      Equations
        Instances For
          @[simp]
          theorem zero_le' {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} :
          0 a
          @[simp]
          theorem not_lt_zero' {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} :
          ¬a < 0
          @[simp]
          theorem le_zero_iff {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} :
          a 0 a = 0
          theorem zero_lt_iff {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} :
          0 < a a 0
          theorem ne_zero_of_lt {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a b : α} (h : b < a) :
          a 0

          See also bot_eq_zero and bot_eq_zero' for canonically ordered monoids.

          theorem pow_pos_iff {α : Type u_1} [LinearOrderedCommMonoidWithZero α] {a : α} {n : } [NoZeroDivisors α] (hn : n 0) :
          0 < a ^ n 0 < a
          @[simp]
          theorem Units.zero_lt {α : Type u_1} [LinearOrderedCommGroupWithZero α] (u : αˣ) :
          0 < u
          theorem mul_inv_lt_of_lt_mul₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c : α} (h : a < b * c) :
          a * c⁻¹ < b
          theorem inv_mul_lt_of_lt_mul₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c : α} (h : a < b * c) :
          b⁻¹ * a < c
          theorem lt_of_mul_lt_mul_of_le₀ {α : Type u_1} [LinearOrderedCommGroupWithZero α] {a b c d : α} (h : a * b < c * d) (hc : 0 < c) (hh : c a) :
          b < d
          instance WithZero.instPreorder {α : Type u_1} [Preorder α] :
          Equations
            instance WithZero.instOrderBot {α : Type u_1} [Preorder α] :
            Equations
              @[simp]
              theorem WithZero.zero_le {α : Type u_1} [Preorder α] (a : WithZero α) :
              0 a
              @[simp]
              theorem WithZero.zero_lt_coe {α : Type u_1} [Preorder α] (a : α) :
              0 < a
              @[simp]
              theorem WithZero.not_coe_le_zero {α : Type u_1} [Preorder α] {a : α} :
              ¬a 0
              @[simp]
              theorem WithZero.not_lt_zero {α : Type u_1} [Preorder α] {x : WithZero α} :
              ¬x < 0
              theorem WithZero.zero_eq_bot {α : Type u_1} [Preorder α] :
              0 =
              @[simp]
              theorem WithZero.coe_lt_coe {α : Type u_1} [Preorder α] {a b : α} :
              a < b a < b
              @[simp]
              theorem WithZero.coe_le_coe {α : Type u_1} [Preorder α] {a b : α} :
              a b a b
              @[simp]
              theorem WithZero.one_lt_coe {α : Type u_1} [Preorder α] {a : α} [One α] :
              1 < a 1 < a
              @[simp]
              theorem WithZero.one_le_coe {α : Type u_1} [Preorder α] {a : α} [One α] :
              1 a 1 a
              @[simp]
              theorem WithZero.coe_lt_one {α : Type u_1} [Preorder α] {a : α} [One α] :
              a < 1 a < 1
              @[simp]
              theorem WithZero.coe_le_one {α : Type u_1} [Preorder α] {a : α} [One α] :
              a 1 a 1
              theorem WithZero.coe_le_iff {α : Type u_1} [Preorder α] {a : α} {x : WithZero α} :
              a x (b : α), x = b a b
              @[simp]
              theorem WithZero.unzero_le_unzero {α : Type u_1} [Preorder α] {a b : WithZero α} (ha : a 0) (hb : b 0) :
              unzero ha unzero hb a b
              theorem WithZero.addLeftMono {α : Type u_1} [Preorder α] [AddZeroClass α] [AddLeftMono α] (h : ∀ (a : α), 0 a) :
              theorem WithZero.map'_mono {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] {f : α →* β} (hf : Monotone f) :
              Monotone (map' f)
              theorem WithZero.map'_strictMono {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] {f : α →* β} (hf : StrictMono f) :
              theorem WithZero.exists_ne_zero_and_lt {α : Type u_1} [Preorder α] {x : WithZero α} [NoMinOrder α] (hx : x 0) :
              (y : WithZero α), y 0 y < x
              theorem WithZero.toAdd_unzero_lt_of_lt_ofAdd {α : Type u_1} [Preorder α] {a : WithZero (Multiplicative α)} {b : α} (ha : a 0) (h : a < (Multiplicative.ofAdd b)) :
              theorem WithZero.lt_ofAdd_of_toAdd_unzero_lt {α : Type u_1} [Preorder α] {a : WithZero (Multiplicative α)} {b : α} (ha : a 0) (h : Multiplicative.toAdd (unzero ha) < b) :
              theorem WithZero.lt_ofAdd_iff {α : Type u_1} [Preorder α] {a : WithZero (Multiplicative α)} {b : α} (ha : a 0) :
              theorem WithZero.toAdd_unzero_le_of_lt_ofAdd {α : Type u_1} [Preorder α] {a : WithZero (Multiplicative α)} {b : α} (ha : a 0) (h : a (Multiplicative.ofAdd b)) :
              theorem WithZero.le_ofAdd_of_toAdd_unzero_le {α : Type u_1} [Preorder α] {a : WithZero (Multiplicative α)} {b : α} (ha : a 0) (h : Multiplicative.toAdd (unzero ha) b) :
              theorem WithZero.le_ofAdd_iff {α : Type u_1} [Preorder α] {a : WithZero (Multiplicative α)} {b : α} (ha : a 0) :
              instance WithZero.instLattice {α : Type u_1} [Lattice α] :
              Equations
                Equations
                  theorem WithZero.le_max_iff {α : Type u_1} [LinearOrder α] {a b c : α} :
                  a max b c a max b c
                  theorem WithZero.min_le_iff {α : Type u_1} [LinearOrder α] {a b c : α} :
                  min a b c min a b c
                  theorem WithZero.exists_ne_zero_and_le_and_le {α : Type u_1} [LinearOrder α] {x y : WithZero α} (hx : x 0) (hy : y 0) :
                  (z : WithZero α), z 0 z x z y
                  theorem WithZero.exists_ne_zero_and_lt_and_lt {α : Type u_1} [LinearOrder α] {x y : WithZero α} [NoMinOrder α] (hx : x 0) (hy : y 0) :
                  (z : WithZero α), z 0 z < x z < y
                  theorem WithZero.isOrderedAddMonoid {α : Type u_1} [AddCommMonoid α] [PartialOrder α] [IsOrderedAddMonoid α] (zero_le : ∀ (a : α), 0 a) :

                  If 0 is the least element in α, then WithZero α is an ordered AddMonoid.

                  Adding a new zero to a canonically ordered additive monoid produces another one.

                  Exponential and logarithm #

                  @[simp]
                  theorem WithZero.exp_le_exp {G : Type u_3} [Preorder G] {a b : G} :
                  exp a exp b a b
                  @[simp]
                  theorem WithZero.exp_lt_exp {G : Type u_3} [Preorder G] {a b : G} :
                  exp a < exp b a < b
                  @[simp]
                  theorem WithZero.exp_pos {G : Type u_3} [Preorder G] {a : G} :
                  0 < exp a
                  @[simp]
                  theorem WithZero.log_le_log {G : Type u_3} [Preorder G] [AddGroup G] {x y : WithZero (Multiplicative G)} (hx : x 0) (hy : y 0) :
                  x.log y.log x y
                  @[simp]
                  theorem WithZero.log_lt_log {G : Type u_3} [Preorder G] [AddGroup G] {x y : WithZero (Multiplicative G)} (hx : x 0) (hy : y 0) :
                  x.log < y.log x < y
                  theorem WithZero.log_le_iff_le_exp {G : Type u_3} [Preorder G] {a : G} [AddGroup G] {x : WithZero (Multiplicative G)} (hx : x 0) :
                  x.log a x exp a
                  theorem WithZero.log_lt_iff_lt_exp {G : Type u_3} [Preorder G] {a : G} [AddGroup G] {x : WithZero (Multiplicative G)} (hx : x 0) :
                  x.log < a x < exp a
                  theorem WithZero.le_log_iff_exp_le {G : Type u_3} [Preorder G] {a : G} [AddGroup G] {x : WithZero (Multiplicative G)} (hx : x 0) :
                  a x.log exp a x
                  theorem WithZero.lt_log_iff_exp_lt {G : Type u_3} [Preorder G] {a : G} [AddGroup G] {x : WithZero (Multiplicative G)} (hx : x 0) :
                  a < x.log exp a < x
                  theorem WithZero.le_exp_of_log_le {G : Type u_3} [Preorder G] {a : G} [AddGroup G] {x : WithZero (Multiplicative G)} (hxa : x.log a) :
                  x exp a
                  theorem WithZero.lt_exp_of_log_lt {G : Type u_3} [Preorder G] {a : G} [AddGroup G] {x : WithZero (Multiplicative G)} (hxa : x.log < a) :
                  x < exp a
                  theorem WithZero.le_log_of_exp_le {G : Type u_3} [Preorder G] {a : G} [AddGroup G] {x : WithZero (Multiplicative G)} (hax : exp a x) :
                  a x.log
                  theorem WithZero.lt_log_of_exp_lt {G : Type u_3} [Preorder G] {a : G} [AddGroup G] {x : WithZero (Multiplicative G)} (hax : exp a < x) :
                  a < x.log

                  The exponential map as an order isomorphism between G and Gᵐ⁰ˣ.

                  Equations
                    Instances For
                      @[simp]
                      theorem WithZero.val_expOrderIso_apply {G : Type u_3} [Preorder G] [AddGroup G] (a✝ : G) :
                      (expOrderIso a✝) = (Multiplicative.ofAdd a✝)
                      @[simp]
                      theorem WithZero.val_inv_expOrderIso_apply {G : Type u_3} [Preorder G] [AddGroup G] (a✝ : G) :

                      The logarithm as an order isomorphism between Gᵐ⁰ˣ and G.

                      Equations
                        Instances For
                          @[simp]
                          theorem WithZero.val_logOrderIso_symm_apply {G : Type u_3} [Preorder G] [AddGroup G] (a✝ : G) :
                          theorem WithZero.lt_mul_exp_iff_le {x y : WithZero (Multiplicative )} (hy : y 0) :
                          x < y * exp 1 x y