Documentation

Mathlib.RingTheory.WittVector.DiscreteValuationRing

Witt vectors over a perfect ring #

This file establishes that Witt vectors over a perfect field are a discrete valuation ring. When k is a perfect ring, a nonzero a : 𝕎 k can be written as p^m * b for some m : ℕ and b : 𝕎 k with nonzero 0th coefficient. When k is also a field, this b can be chosen to be a unit of 𝕎 k.

Main declarations #

def WittVector.succNthValUnits {p : } [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] (n : ) (a : kˣ) (A : WittVector p k) (bs : Fin (n + 1)k) :
k

This is the n+1st coefficient of our inverse.

Equations
    Instances For
      @[irreducible]
      noncomputable def WittVector.inverseCoeff {p : } [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] (a : kˣ) (A : WittVector p k) :
      k

      Recursively defines the sequence of coefficients for the inverse to a Witt vector whose first entry is a unit.

      Equations
        Instances For
          def WittVector.mkUnit {p : } [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] {a : kˣ} {A : WittVector p k} (hA : A.coeff 0 = a) :

          Upgrade a Witt vector A whose first entry A.coeff 0 is a unit to be, itself, a unit in 𝕎 k.

          Equations
            Instances For
              @[simp]
              theorem WittVector.coe_mkUnit {p : } [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] {a : kˣ} {A : WittVector p k} (hA : A.coeff 0 = a) :
              (mkUnit hA) = A
              theorem WittVector.isUnit_of_coeff_zero_ne_zero {p : } [hp : Fact (Nat.Prime p)] {k : Type u_1} [Field k] [CharP k p] (x : WittVector p k) (hx : x.coeff 0 0) :
              theorem WittVector.irreducible (p : ) [hp : Fact (Nat.Prime p)] {k : Type u_1} [Field k] [CharP k p] :
              theorem WittVector.exists_eq_pow_p_mul {p : } [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] [PerfectRing k p] (a : WittVector p k) (ha : a 0) :
              ∃ (m : ) (b : WittVector p k), b.coeff 0 0 a = p ^ m * b
              theorem WittVector.exists_eq_pow_p_mul' {p : } [hp : Fact (Nat.Prime p)] {k : Type u_1} [Field k] [CharP k p] [PerfectRing k p] (a : WittVector p k) (ha : a 0) :
              ∃ (m : ) (b : (WittVector p k)ˣ), a = p ^ m * b

              The ring of Witt Vectors of a perfect field of positive characteristic is a DVR.