Witt vectors over a perfect ring #
This file establishes that Witt vectors over a perfect field are a discrete valuation ring.
When k
is a perfect ring, a nonzero a : 𝕎 k
can be written as p^m * b
for some m : ℕ
and
b : 𝕎 k
with nonzero 0th coefficient.
When k
is also a field, this b
can be chosen to be a unit of 𝕎 k
.
Main declarations #
WittVector.exists_eq_pow_p_mul
: the existence of this elementb
over a perfect ringWittVector.exists_eq_pow_p_mul'
: the existence of this unitb
over a perfect fieldWittVector.isDiscreteValuationRing
:𝕎 k
is a discrete valuation ring ifk
is a perfect field
@[irreducible]
noncomputable def
WittVector.inverseCoeff
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
(a : kˣ)
(A : WittVector p k)
:
ℕ → k
Recursively defines the sequence of coefficients for the inverse to a Witt vector whose first entry is a unit.
Equations
Instances For
def
WittVector.mkUnit
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
{a : kˣ}
{A : WittVector p k}
(hA : A.coeff 0 = ↑a)
:
(WittVector p k)ˣ
Upgrade a Witt vector A
whose first entry A.coeff 0
is a unit to be, itself, a unit in 𝕎 k
.
Equations
Instances For
theorem
WittVector.irreducible
(p : ℕ)
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[Field k]
[CharP k p]
:
Irreducible ↑p
theorem
WittVector.exists_eq_pow_p_mul
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
[PerfectRing k p]
(a : WittVector p k)
(ha : a ≠ 0)
:
theorem
WittVector.exists_eq_pow_p_mul'
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[Field k]
[CharP k p]
[PerfectRing k p]
(a : WittVector p k)
(ha : a ≠ 0)
:
theorem
WittVector.isDiscreteValuationRing
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[Field k]
[CharP k p]
[PerfectRing k p]
:
The ring of Witt Vectors of a perfect field of positive characteristic is a DVR.