Documentation

Mathlib.RingTheory.WittVector.Verschiebung

The Verschiebung operator #

References #

def WittVector.verschiebungFun {p : } {R : Type u_1} [CommRing R] (x : WittVector p R) :

verschiebungFun x shifts the coefficients of x up by one, by inserting 0 as the 0th coefficient. x.coeff i then becomes (verchiebungFun x).coeff (i + 1).

verschiebungFun is the underlying function of the additive monoid hom WittVector.verschiebung.

Equations
    Instances For
      theorem WittVector.verschiebungFun_coeff {p : } {R : Type u_1} [CommRing R] (x : WittVector p R) (n : ) :
      x.verschiebungFun.coeff n = if n = 0 then 0 else x.coeff (n - 1)
      @[simp]
      theorem WittVector.ghostComponent_verschiebungFun {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] (x : WittVector p R) (n : ) :

      The 0th Verschiebung polynomial is 0. For n > 0, the nth Verschiebung polynomial is the variable X (n-1).

      Equations
        Instances For
          instance WittVector.verschiebungFun_isPoly (p : ) :
          IsPoly p fun (R : Type u_3) (_Rcr : CommRing R) => verschiebungFun

          WittVector.verschiebung has polynomial structure given by WittVector.verschiebungPoly.

          noncomputable def WittVector.verschiebung {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] :

          verschiebung x shifts the coefficients of x up by one, by inserting 0 as the 0th coefficient. x.coeff i then becomes (verchiebung x).coeff (i + 1).

          This is an additive monoid hom with underlying function verschiebung_fun.

          Equations
            Instances For
              theorem WittVector.verschiebung_isPoly {p : } [hp : Fact (Nat.Prime p)] :
              IsPoly p fun (x : Type u_3) (x_1 : CommRing x) => verschiebung

              WittVector.verschiebung is a polynomial function.

              @[simp]
              theorem WittVector.map_verschiebung {p : } {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [hp : Fact (Nat.Prime p)] (f : R →+* S) (x : WittVector p R) :

              verschiebung is a natural transformation

              theorem WittVector.ghostComponent_verschiebung {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] (x : WittVector p R) (n : ) :
              @[simp]
              theorem WittVector.verschiebung_coeff_zero {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] (x : WittVector p R) :
              theorem WittVector.verschiebung_coeff_add_one {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] (x : WittVector p R) (n : ) :
              (verschiebung x).coeff (n + 1) = x.coeff n
              @[simp]
              theorem WittVector.verschiebung_coeff_succ {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] (x : WittVector p R) (n : ) :