Documentation

Mathlib.Tactic.Simproc.Factors

simproc for Nat.primeFactorsList #

Note that since norm_num can only produce numerals, we can't register this as a norm_num extension.

A proof of the partial computation of primeFactorsList. Asserts that l is a sorted list of primes multiplying to n and lower bounded by a prime p.

Equations
    Instances For

      The argument explicitness in this section is chosen to make only the numerals in the factors list appear in the proof term.

      theorem Mathlib.Meta.Simproc.FactorsHelper.cons_of_le {n m : } (a : ) {b : } {l : List } (h₁ : NormNum.IsNat (b * m) n) (h₂ : a b) (h₃ : b.minFac = b) (H : FactorsHelper m b l) :
      FactorsHelper n a (b :: l)
      theorem Mathlib.Meta.Simproc.FactorsHelper.cons {n m a : } (b : ) {l : List } (h₁ : NormNum.IsNat (b * m) n) (h₂ : a.blt b = true) (h₃ : NormNum.IsNat b.minFac b) (H : FactorsHelper m b l) :
      FactorsHelper n a (b :: l)
      theorem Mathlib.Meta.Simproc.FactorsHelper.cons_self {n m : } (a : ) {l : List } (h : NormNum.IsNat (a * m) n) (H : FactorsHelper m a l) :
      FactorsHelper n a (a :: l)
      def Mathlib.Meta.Simproc.evalPrimeFactorsList {en enl : Q()} (hn : Q(NormNum.IsNat «$en» «$enl»)) :
      Lean.MetaM ((l : Q(List )) × Q(«$en».primeFactorsList = «$l»))

      Given a natural number n, returns (l, ⊢ Nat.primeFactorsList n = l).

      Equations
        Instances For

          A simproc for terms of the form Nat.primeFactorsList (OfNat.ofNat n).

          Equations
            Instances For