Documentation

Mathlib.Topology.Algebra.Valued.NormedValued

Correspondence between nontrivial nonarchimedean norms and rank one valuations #

Nontrivial nonarchimedean norms correspond to rank one valuations.

Main Definitions #

Tags #

norm, nonarchimedean, nontrivial, valuation, rank one

The valuation on a nonarchimedean normed field K defined as nnnorm.

Equations
    Instances For
      @[simp]

      The valued field structure on a nonarchimedean normed field K, determined by the norm.

      Equations
        Instances For
          def Valued.norm {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] :
          L

          The norm function determined by a rank one valuation on a field L.

          Equations
            Instances For
              theorem Valued.norm_def {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
              theorem Valued.norm_nonneg {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] (x : L) :
              0 norm x
              theorem Valued.norm_add_le {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] (x y : L) :
              norm (x + y) max (norm x) (norm y)
              theorem Valued.norm_eq_zero {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} (hx : norm x = 0) :
              x = 0
              theorem Valued.norm_pos_iff_valuation_pos {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
              0 < norm x 0 < v x
              def Valued.toNormedField (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] :

              The normed field structure determined by a rank one valuation.

              Equations
                Instances For
                  theorem Valued.isNonarchimedean_norm (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] :
                  IsNonarchimedean fun (x : L) => x
                  instance Valued.instIsUltrametricDist (L : Type u_1) [Field L] (Γ₀ : Type u_2) [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] :
                  @[simp]
                  theorem Valued.toNormedField.norm_le_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x x' : L} :
                  @[simp]
                  theorem Valued.toNormedField.norm_lt_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x x' : L} :
                  x < x' v x < v x'
                  @[simp]
                  theorem Valued.toNormedField.norm_le_one_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
                  x 1 v x 1
                  @[simp]
                  theorem Valued.toNormedField.norm_lt_one_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
                  x < 1 v x < 1
                  @[simp]
                  theorem Valued.toNormedField.one_le_norm_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
                  1 x 1 v x
                  @[simp]
                  theorem Valued.toNormedField.one_lt_norm_iff {L : Type u_1} [Field L] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [val : Valued L Γ₀] [hv : v.RankOne] {x : L} :
                  1 < x 1 < v x

                  The nontrivially normed field structure determined by a rank one valuation.

                  Equations
                    Instances For