Documentation

Mathlib.Topology.Algebra.Valued.WithVal

Ring topologised by a valuation #

For a given valuation v : Valuation R Γ₀ on a ring R taking values in Γ₀, this file defines the type synonym WithVal v of R. By assigning a Valued (WithVal v) Γ₀ instance, WithVal v represents the ring R equipped with the topology coming from v. The type synonym WithVal v is in isomorphism to R as rings via WithVal.equiv v. This isomorphism should be used to explicitly map terms of WithVal v to terms of R.

The WithVal type synonym is used to define the completion of R with respect to v in Valuation.Completion. An example application of this is IsDedekindDomain.HeightOneSpectrum.adicCompletion, which is the completion of the field of fractions of a Dedekind domain with respect to a height-one prime ideal of the domain.

Main definitions #

def WithVal {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [Ring R] :
Valuation R Γ₀Type u_1

Type synonym for a ring equipped with the topology coming from a valuation.

Equations
    Instances For
      instance WithVal.instRing {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [Ring R] (v : Valuation R Γ₀) :
      Equations
        instance WithVal.instCommRing {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [CommRing R] (v : Valuation R Γ₀) :
        Equations
          instance WithVal.instField {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [Field R] (v : Valuation R Γ₀) :
          Equations
            instance WithVal.instInhabited {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [Ring R] (v : Valuation R Γ₀) :
            Equations
              instance WithVal.instAlgebra {R : Type u_1} {Γ₀ : Type u_2} {S : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] [CommSemiring S] [CommRing R] [Algebra S R] (v : Valuation R Γ₀) :
              Equations
                instance WithVal.instIsFractionRing {R : Type u_1} {Γ₀ : Type u_2} {S : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] [CommRing S] [CommRing R] [Algebra S R] [IsFractionRing S R] (v : Valuation R Γ₀) :
                instance WithVal.instSMul {R : Type u_1} {Γ₀ : Type u_2} {S : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] [Ring R] [SMul S R] (v : Valuation R Γ₀) :
                Equations
                  instance WithVal.instIsScalarTower {R : Type u_1} {Γ₀ : Type u_2} {P : Type u_3} {S : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] [Ring R] [SMul P S] [SMul S R] [SMul P R] [IsScalarTower P S R] (v : Valuation R Γ₀) :
                  instance WithVal.instAlgebra_1 {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [CommRing R] (v : Valuation R Γ₀) {S : Type u_5} [Ring S] [Algebra R S] :
                  Equations
                    instance WithVal.instAlgebra_2 {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [CommRing R] {S : Type u_5} [Ring S] [Algebra R S] (w : Valuation S Γ₀) :
                    Equations
                      instance WithVal.instIsScalarTower_1 {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [CommRing R] (v : Valuation R Γ₀) {P : Type u_5} {S : Type u_6} [Ring S] [Semiring P] [Module P R] [Module P S] [Algebra R S] [IsScalarTower P R S] :
                      def WithVal.equiv {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [Ring R] (v : Valuation R Γ₀) :

                      Canonical ring equivalence between WithVal v and R.

                      Equations
                        Instances For
                          instance WithVal.instValued {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] {R : Type u_3} [Ring R] (v : Valuation R Γ₀) :
                          Valued (WithVal v) Γ₀
                          Equations
                            @[simp]
                            theorem WithVal.apply_equiv {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [Ring R] (v : Valuation R Γ₀) (r : WithVal v) :
                            Valued.v ((equiv v) r) = v r
                            @[simp]
                            theorem WithVal.apply_symm_equiv {R : Type u_1} {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] [Ring R] (v : Valuation R Γ₀) (r : R) :
                            v ((equiv v).symm r) = v r

                            The completion of a field with respect to a valuation.

                            @[reducible, inline]
                            abbrev Valuation.Completion {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] {R : Type u_3} [Ring R] (v : Valuation R Γ₀) :
                            Type u_3

                            The completion of a field with respect to a valuation.

                            Equations
                              Instances For
                                instance Valuation.instCoeCompletion {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] {R : Type u_3} [Ring R] (v : Valuation R Γ₀) :
                                Equations

                                  The ring equivalence between 𝓞 (WithVal v) and an integral closure of in K.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem NumberField.RingOfIntegers.withValEquiv_symm_apply {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] {K : Type u_3} [Field K] (v : Valuation K Γ₀) (R : Type u_4) [CommRing R] [Algebra R K] [IsIntegralClosure R K] (a✝ : R) :
                                      @[simp]
                                      theorem NumberField.RingOfIntegers.withValEquiv_apply {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] {K : Type u_3} [Field K] (v : Valuation K Γ₀) (R : Type u_4) [CommRing R] [Algebra R K] [IsIntegralClosure R K] (a✝ : RingOfIntegers (WithVal v)) :

                                      The ring of integers of WithVal v, when v is a valuation on , is equivalent to .

                                      Equations
                                        Instances For