Documentation

Mathlib.Topology.GDelta.Basic

sets #

In this file we define sets and prove their basic properties.

Main definitions #

Main results #

We prove that finite or countable intersections of Gδ sets are Gδ sets.

See Mathlib/Topology/GDelta/MetrizableSpace.lean for the proof that continuity set of a function from a topological space to a metrizable space is a Gδ set.

Tags #

Gδ set, residual set, nowhere dense set, meagre set

def IsGδ {X : Type u_1} [TopologicalSpace X] (s : Set X) :

A Gδ set is a countable intersection of open sets.

Equations
    Instances For
      theorem IsOpen.isGδ {X : Type u_1} [TopologicalSpace X] {s : Set X} (h : IsOpen s) :

      An open set is a Gδ set.

      @[simp]
      theorem IsGδ.empty {X : Type u_1} [TopologicalSpace X] :
      @[simp]
      theorem IsGδ.biInter_of_isOpen {X : Type u_1} {ι : Type u_3} [TopologicalSpace X] {I : Set ι} (hI : I.Countable) {f : ιSet X} (hf : iI, IsOpen (f i)) :
      IsGδ (⋂ iI, f i)
      theorem IsGδ.iInter_of_isOpen {X : Type u_1} {ι' : Sort u_4} [TopologicalSpace X] [Countable ι'] {f : ι'Set X} (hf : ∀ (i : ι'), IsOpen (f i)) :
      IsGδ (⋂ (i : ι'), f i)
      theorem isGδ_iff_eq_iInter_nat {X : Type u_1} [TopologicalSpace X] {s : Set X} :
      IsGδ s ∃ (f : Set X), (∀ (n : ), IsOpen (f n)) s = ⋂ (n : ), f n
      theorem IsGδ.eq_iInter_nat {X : Type u_1} [TopologicalSpace X] {s : Set X} :
      IsGδ s∃ (f : Set X), (∀ (n : ), IsOpen (f n)) s = ⋂ (n : ), f n

      Alias of the forward direction of isGδ_iff_eq_iInter_nat.

      theorem IsGδ.iInter {X : Type u_1} {ι' : Sort u_4} [TopologicalSpace X] [Countable ι'] {s : ι'Set X} (hs : ∀ (i : ι'), IsGδ (s i)) :
      IsGδ (⋂ (i : ι'), s i)

      The intersection of an encodable family of Gδ sets is a Gδ set.

      theorem IsGδ.biInter {X : Type u_1} {ι : Type u_3} [TopologicalSpace X] {s : Set ι} (hs : s.Countable) {t : (i : ι) → i sSet X} (ht : ∀ (i : ι) (hi : i s), IsGδ (t i hi)) :
      IsGδ (⋂ (i : ι), ⋂ (h : i s), t i h)
      theorem IsGδ.sInter {X : Type u_1} [TopologicalSpace X] {S : Set (Set X)} (h : sS, IsGδ s) (hS : S.Countable) :

      A countable intersection of Gδ sets is a Gδ set.

      theorem IsGδ.inter {X : Type u_1} [TopologicalSpace X] {s t : Set X} (hs : IsGδ s) (ht : IsGδ t) :
      IsGδ (s t)
      theorem IsGδ.union {X : Type u_1} [TopologicalSpace X] {s t : Set X} (hs : IsGδ s) (ht : IsGδ t) :
      IsGδ (s t)

      The union of two Gδ sets is a Gδ set.

      theorem IsGδ.sUnion {X : Type u_1} [TopologicalSpace X] {S : Set (Set X)} (hS : S.Finite) (h : sS, IsGδ s) :

      The union of finitely many Gδ sets is a Gδ set, Set.sUnion version.

      theorem IsGδ.biUnion {X : Type u_1} {ι : Type u_3} [TopologicalSpace X] {s : Set ι} (hs : s.Finite) {f : ιSet X} (h : is, IsGδ (f i)) :
      IsGδ (⋃ is, f i)

      The union of finitely many Gδ sets is a Gδ set, bounded indexed union version.

      theorem IsGδ.iUnion {X : Type u_1} {ι' : Sort u_4} [TopologicalSpace X] [Finite ι'] {f : ι'Set X} (h : ∀ (i : ι'), IsGδ (f i)) :
      IsGδ (⋃ (i : ι'), f i)

      The union of finitely many Gδ sets is a Gδ set, bounded indexed union version.

      def residual (X : Type u_5) [TopologicalSpace X] :

      A set s is called residual if it includes a countable intersection of dense open sets.

      Equations
        Instances For
          theorem residual_of_dense_open {X : Type u_1} [TopologicalSpace X] {s : Set X} (ho : IsOpen s) (hd : Dense s) :

          Dense open sets are residual.

          theorem residual_of_dense_Gδ {X : Type u_1} [TopologicalSpace X] {s : Set X} (ho : IsGδ s) (hd : Dense s) :

          Dense Gδ sets are residual.

          theorem mem_residual_iff {X : Type u_1} [TopologicalSpace X] {s : Set X} :
          s residual X ∃ (S : Set (Set X)), (∀ tS, IsOpen t) (∀ tS, Dense t) S.Countable ⋂₀ S s

          A set is residual iff it includes a countable intersection of dense open sets.

          def IsNowhereDense {X : Type u_5} [TopologicalSpace X] (s : Set X) :

          A set is called nowhere dense iff its closure has empty interior.

          Equations
            Instances For
              @[simp]

              The empty set is nowhere dense.

              A closed set is nowhere dense iff its interior is empty.

              If a set s is nowhere dense, so is its closure.

              A nowhere dense set s is contained in a closed nowhere dense set (namely, its closure).

              A set s is closed and nowhere dense iff its complement sᶜ is open and dense.

              def IsMeagre {X : Type u_5} [TopologicalSpace X] (s : Set X) :

              A set is called meagre iff its complement is a residual (or comeagre) set.

              Equations
                Instances For

                  The empty set is meagre.

                  theorem IsMeagre.mono {X : Type u_5} [TopologicalSpace X] {s t : Set X} (hs : IsMeagre s) (hts : t s) :

                  Subsets of meagre sets are meagre.

                  theorem IsMeagre.inter {X : Type u_5} [TopologicalSpace X] {s t : Set X} (hs : IsMeagre s) :

                  An intersection with a meagre set is meagre.

                  theorem IsMeagre.union {X : Type u_5} [TopologicalSpace X] {s t : Set X} (hs : IsMeagre s) (ht : IsMeagre t) :

                  A union of two meagre sets is meagre.

                  theorem isMeagre_iUnion {ι : Type u_3} {X : Type u_5} [TopologicalSpace X] [Countable ι] {f : ιSet X} (hs : ∀ (i : ι), IsMeagre (f i)) :
                  IsMeagre (⋃ (i : ι), f i)

                  A countable union of meagre sets is meagre.

                  theorem isMeagre_iff_countable_union_isNowhereDense {X : Type u_5} [TopologicalSpace X] {s : Set X} :
                  IsMeagre s ∃ (S : Set (Set X)), (∀ tS, IsNowhereDense t) S.Countable s ⋃₀ S

                  A set is meagre iff it is contained in a countable union of nowhere dense sets.

                  theorem nonempty_of_not_isMeagre {X : Type u_5} [TopologicalSpace X] {s : Set X} (hs : ¬IsMeagre s) :

                  A set of second category (i.e. non-meagre) is nonempty.