Documentation

Mathlib.Topology.Instances.ENat

Topology on extended natural numbers #

Topology on ℕ∞.

Note: this is different from the EMetricSpace topology. The EMetricSpace topology has IsOpen {∞}, but all neighborhoods of in ℕ∞ contain infinite intervals.

Equations
    theorem ENat.nhds_natCast (n : ) :
    nhds n = pure n
    @[simp]
    theorem ENat.nhds_eq_pure {n : ℕ∞} (h : n ) :
    nhds n = pure n
    theorem ENat.mem_nhds_iff {x : ℕ∞} {s : Set ℕ∞} (hx : x ) :
    s nhds x x s
    theorem ENat.mem_nhds_natCast_iff (n : ) {s : Set ℕ∞} :
    s nhds n n s
    theorem ENat.tendsto_nhds_top_iff_natCast_lt {α : Type u_1} {l : Filter α} {f : αℕ∞} :
    Filter.Tendsto f l (nhds ) ∀ (n : ), ∀ᶠ (a : α) in l, n < f a
    theorem ENat.continuousAt_sub {a b : ℕ∞} (h : a b ) :
    ContinuousAt (Function.uncurry fun (x1 x2 : ℕ∞) => x1 - x2) (a, b)
    theorem Filter.Tendsto.enatSub {α : Type u_1} {l : Filter α} {f g : αℕ∞} {a b : ℕ∞} (hf : Tendsto f l (nhds a)) (hg : Tendsto g l (nhds b)) (h : a b ) :
    Tendsto (fun (x : α) => f x - g x) l (nhds (a - b))
    theorem ContinuousWithinAt.enatSub {X : Type u_1} [TopologicalSpace X] {f g : Xℕ∞} {s : Set X} {x : X} (hf : ContinuousWithinAt f s x) (hg : ContinuousWithinAt g s x) (h : f x g x ) :
    ContinuousWithinAt (fun (x : X) => f x - g x) s x
    theorem ContinuousAt.enatSub {X : Type u_1} [TopologicalSpace X] {f g : Xℕ∞} {x : X} (hf : ContinuousAt f x) (hg : ContinuousAt g x) (h : f x g x ) :
    ContinuousAt (fun (x : X) => f x - g x) x
    theorem ContinuousOn.enatSub {X : Type u_1} [TopologicalSpace X] {f g : Xℕ∞} {s : Set X} (hf : ContinuousOn f s) (hg : ContinuousOn g s) (h : xs, f x g x ) :
    ContinuousOn (fun (x : X) => f x - g x) s
    theorem Continuous.enatSub {X : Type u_1} [TopologicalSpace X] {f g : Xℕ∞} (hf : Continuous f) (hg : Continuous g) (h : ∀ (x : X), f x g x ) :
    Continuous fun (x : X) => f x - g x