Documentation

Mathlib.Topology.Sets.Order

Clopen upper sets #

In this file we define the type of clopen upper sets.

Compact open sets #

structure ClopenUpperSet (α : Type u_2) [TopologicalSpace α] [LE α] extends TopologicalSpace.Clopens α :
Type u_2

The type of clopen upper sets of a topological space.

Instances For
    Equations
      def ClopenUpperSet.Simps.coe {α : Type u_1} [TopologicalSpace α] [LE α] (s : ClopenUpperSet α) :
      Set α

      See Note [custom simps projection].

      Equations
        Instances For
          theorem ClopenUpperSet.upper {α : Type u_1} [TopologicalSpace α] [LE α] (s : ClopenUpperSet α) :
          theorem ClopenUpperSet.isClopen {α : Type u_1} [TopologicalSpace α] [LE α] (s : ClopenUpperSet α) :

          Reinterpret an upper clopen as an upper set.

          Equations
            Instances For
              @[simp]
              theorem ClopenUpperSet.coe_toUpperSet {α : Type u_1} [TopologicalSpace α] [LE α] (s : ClopenUpperSet α) :
              s.toUpperSet = s
              theorem ClopenUpperSet.ext {α : Type u_1} [TopologicalSpace α] [LE α] {s t : ClopenUpperSet α} (h : s = t) :
              s = t
              theorem ClopenUpperSet.ext_iff {α : Type u_1} [TopologicalSpace α] [LE α] {s t : ClopenUpperSet α} :
              s = t s = t
              @[simp]
              theorem ClopenUpperSet.coe_mk {α : Type u_1} [TopologicalSpace α] [LE α] (s : TopologicalSpace.Clopens α) (h : IsUpperSet s.carrier) :
              { toClopens := s, upper' := h } = s
              instance ClopenUpperSet.instMax {α : Type u_1} [TopologicalSpace α] [LE α] :
              Equations
                instance ClopenUpperSet.instMin {α : Type u_1} [TopologicalSpace α] [LE α] :
                Equations
                  instance ClopenUpperSet.instTop {α : Type u_1} [TopologicalSpace α] [LE α] :
                  Equations
                    instance ClopenUpperSet.instBot {α : Type u_1} [TopologicalSpace α] [LE α] :
                    Equations
                      Equations
                        @[simp]
                        theorem ClopenUpperSet.coe_sup {α : Type u_1} [TopologicalSpace α] [LE α] (s t : ClopenUpperSet α) :
                        (st) = s t
                        @[simp]
                        theorem ClopenUpperSet.coe_inf {α : Type u_1} [TopologicalSpace α] [LE α] (s t : ClopenUpperSet α) :
                        (st) = s t
                        @[simp]
                        theorem ClopenUpperSet.coe_top {α : Type u_1} [TopologicalSpace α] [LE α] :
                        @[simp]
                        theorem ClopenUpperSet.coe_bot {α : Type u_1} [TopologicalSpace α] [LE α] :
                        =