Documentation

Mathlib.Topology.Sheaves.Presheaf

Presheaves on a topological space #

We define TopCat.Presheaf C X simply as (TopologicalSpace.Opens X)ᵒᵖ ⥤ C, and inherit the category structure with natural transformations as morphisms.

We define

We also define the functors pullback C f : Y.Presheaf C ⥤ X.Presheaf c, and provide their adjunction at TopCat.Presheaf.pushforwardPullbackAdjunction.

The category of C-valued presheaves on a (bundled) topological space X.

Equations
    Instances For
      theorem TopCat.Presheaf.ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X : TopCat} {P Q : Presheaf C X} {f g : P Q} (w : ∀ (U : TopologicalSpace.Opens X), f.app (Opposite.op U) = g.app (Opposite.op U)) :
      f = g
      theorem TopCat.Presheaf.ext_iff {C : Type u} [CategoryTheory.Category.{v, u} C] {X : TopCat} {P Q : Presheaf C X} {f g : P Q} :
      f = g ∀ (U : TopologicalSpace.Opens X), f.app (Opposite.op U) = g.app (Opposite.op U)

      attribute sheaf_restrict to mark lemmas related to restricting sheaves

      Equations
        Instances For

          restrict_tac solves relations among subsets (copied from aesop cat)

          Equations
            Instances For

              restrict_tac? passes along Try this from aesop

              Equations
                Instances For
                  def TopCat.Presheaf.restrict {X : TopCat} {C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {FC : CCType u_2} {CC : CType u_3} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [CategoryTheory.ConcreteCategory C FC] {F : Presheaf C X} {V : TopologicalSpace.Opens X} (x : CategoryTheory.ToType (F.obj (Opposite.op V))) {U : TopologicalSpace.Opens X} (h : U V) :

                  The restriction of a section along an inclusion of open sets. For x : F.obj (op V), we provide the notation x |_ₕ i (h stands for hom) for i : U ⟶ V, and the notation x |_ₗ U ⟪i⟫ (l stands for le) for i : U ≤ V.

                  Equations
                    Instances For

                      restriction of a section along an inclusion

                      Equations
                        Instances For

                          restriction of a section along a subset relation

                          Equations
                            Instances For
                              @[reducible, inline]
                              abbrev TopCat.Presheaf.restrictOpen {X : TopCat} {C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {FC : CCType u_2} {CC : CType u_3} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [CategoryTheory.ConcreteCategory C FC] {F : Presheaf C X} {V : TopologicalSpace.Opens X} (x : CategoryTheory.ToType (F.obj (Opposite.op V))) (U : TopologicalSpace.Opens X) (e : U V := by restrict_tac) :

                              The restriction of a section along an inclusion of open sets. For x : F.obj (op V), we provide the notation x |_ U, where the proof U ≤ V is inferred by the tactic Top.presheaf.restrict_tac'

                              Equations
                                Instances For

                                  restriction of a section to open subset

                                  Equations
                                    Instances For
                                      theorem TopCat.Presheaf.restrict_restrict {X : TopCat} {C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {FC : CCType u_2} {CC : CType u_3} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [CategoryTheory.ConcreteCategory C FC] {F : Presheaf C X} {U V W : TopologicalSpace.Opens X} (e₁ : U V) (e₂ : V W) (x : CategoryTheory.ToType (F.obj (Opposite.op W))) :
                                      restrictOpen (restrictOpen x V e₂) U e₁ = restrictOpen x U
                                      theorem TopCat.Presheaf.map_restrict {X : TopCat} {C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {FC : CCType u_2} {CC : CType u_3} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [CategoryTheory.ConcreteCategory C FC] {F G : Presheaf C X} (e : F G) {U V : TopologicalSpace.Opens X} (h : U V) (x : CategoryTheory.ToType (F.obj (Opposite.op V))) :

                                      The pushforward functor.

                                      Equations
                                        Instances For
                                          @[simp]

                                          push forward of a presheaf

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem TopCat.Presheaf.pushforward_map_app' (C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (f : X Y) {𝒢 : Presheaf C X} (α : 𝒢) {U : (TopologicalSpace.Opens Y)ᵒᵖ} :

                                              The natural isomorphism between the pushforward of a presheaf along the identity continuous map and the original presheaf.

                                              Equations
                                                Instances For

                                                  The natural isomorphism between the pushforward of a presheaf along the composition of two continuous maps and the corresponding pushforward of a pushforward.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      def TopCat.Presheaf.pushforwardEq {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} {f g : X Y} (h : f = g) ( : Presheaf C X) :
                                                      (pushforward C f).obj (pushforward C g).obj

                                                      An equality of continuous maps induces a natural isomorphism between the pushforwards of a presheaf along those maps.

                                                      Equations
                                                        Instances For
                                                          theorem TopCat.Presheaf.pushforward_eq' {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} {f g : X Y} (h : f = g) ( : Presheaf C X) :
                                                          (pushforward C f).obj = (pushforward C g).obj
                                                          @[simp]
                                                          theorem TopCat.Presheaf.pushforwardEq_hom_app {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} {f g : X Y} (h : f = g) ( : Presheaf C X) (U : (TopologicalSpace.Opens Y)ᵒᵖ) :

                                                          A homeomorphism of spaces gives an equivalence of categories of presheaves.

                                                          Equations
                                                            Instances For
                                                              def TopCat.Presheaf.toPushforwardOfIso {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X Y) { : Presheaf C X} {𝒢 : Presheaf C Y} (α : (pushforward C H.hom).obj 𝒢) :
                                                              (pushforward C H.inv).obj 𝒢

                                                              If H : X ≅ Y is a homeomorphism, then given an H _* ℱ ⟶ 𝒢, we may obtain an ℱ ⟶ H ⁻¹ _* 𝒢.

                                                              Equations
                                                                Instances For
                                                                  def TopCat.Presheaf.pushforwardToOfIso {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H₁ : X Y) { : Presheaf C Y} {𝒢 : Presheaf C X} (H₂ : (pushforward C H₁.hom).obj 𝒢) :
                                                                  (pushforward C H₁.inv).obj 𝒢

                                                                  If H : X ≅ Y is a homeomorphism, then given an H _* ℱ ⟶ 𝒢, we may obtain an ℱ ⟶ H ⁻¹ _* 𝒢.

                                                                  Equations
                                                                    Instances For

                                                                      Pullback a presheaf on Y along a continuous map f : X ⟶ Y, obtaining a presheaf on X.

                                                                      Equations
                                                                        Instances For

                                                                          The pullback and pushforward along a continuous map are adjoint to each other.

                                                                          Equations
                                                                            Instances For

                                                                              Pulling back along a homeomorphism is the same as pushing forward along its inverse.

                                                                              Equations
                                                                                Instances For

                                                                                  Pulling back along the inverse of a homeomorphism is the same as pushing forward along it.

                                                                                  Equations
                                                                                    Instances For

                                                                                      If f '' U is open, then f⁻¹ℱ U ≅ ℱ (f '' U).

                                                                                      Equations
                                                                                        Instances For