Documentation

Mathlib.Topology.Category.TopCat.Basic

Category instance for topological spaces #

We introduce the bundled category TopCat of topological spaces together with the functors TopCat.discrete and TopCat.trivial from the category of types to TopCat which equip a type with the corresponding discrete, resp. trivial, topology. For a proof that these functors are left, resp. right adjoint to the forgetful functor, see Mathlib/Topology/Category/TopCat/Adjunctions.lean.

structure TopCat :
Type (u + 1)

The category of topological spaces.

Instances For
    @[reducible, inline]

    The object in TopCat associated to a type equipped with the appropriate typeclasses. This is the preferred way to construct a term of TopCat.

    Equations
      Instances For
        theorem TopCat.coe_of (X : Type u) [TopologicalSpace X] :
        (of X) = X
        theorem TopCat.of_carrier (X : TopCat) :
        of X = X
        structure TopCat.Hom (X Y : TopCat) :

        The type of morphisms in TopCat.

        Instances For
          theorem TopCat.Hom.ext_iff {X Y : TopCat} {x y : X.Hom Y} :
          x = y x.hom' = y.hom'
          theorem TopCat.Hom.ext {X Y : TopCat} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
          x = y
          @[reducible, inline]
          abbrev TopCat.Hom.hom {X Y : TopCat} (f : X.Hom Y) :
          C(X, Y)

          Turn a morphism in TopCat back into a ContinuousMap.

          Equations
            Instances For
              @[reducible, inline]
              abbrev TopCat.ofHom {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) :
              of X of Y

              Typecheck a ContinuousMap as a morphism in TopCat.

              Equations
                Instances For
                  def TopCat.Hom.Simps.hom (X Y : TopCat) (f : X.Hom Y) :
                  C(X, Y)

                  Use the ConcreteCategory.hom projection for @[simps] lemmas.

                  Equations
                    Instances For

                      The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                      @[simp]
                      theorem TopCat.hom_comp {X Y Z : TopCat} (f : X Y) (g : Y Z) :
                      theorem TopCat.hom_ext {X Y : TopCat} {f g : X Y} (hf : Hom.hom f = Hom.hom g) :
                      f = g
                      theorem TopCat.hom_ext_iff {X Y : TopCat} {f g : X Y} :
                      theorem TopCat.ext {X Y : TopCat} {f g : X Y} (w : ∀ (x : X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                      f = g
                      @[simp]
                      theorem TopCat.hom_ofHom {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) :
                      @[simp]
                      theorem TopCat.ofHom_hom {X Y : TopCat} (f : X Y) :
                      @[simp]
                      theorem TopCat.coe_of_of {X Y : Type u} [TopologicalSpace X] [TopologicalSpace Y] {f : C(X, Y)} {x : (CategoryTheory.forget TopCat).obj (of X)} :
                      (ofHom f) x = f x

                      Replace a function coercion for a morphism TopCat.of X ⟶ TopCat.of Y with the definitionally equal function coercion for a continuous map C(X, Y).

                      @[deprecated "Simply remove this from the `simp`/`rw` set: the LHS and RHS are now identical." (since := "2025-01-30")]
                      theorem TopCat.hom_apply {X Y : TopCat} (f : X Y) (x : X) :

                      The discrete topology on any type.

                      Equations
                        Instances For

                          The trivial topology on any type.

                          Equations
                            Instances For
                              def TopCat.isoOfHomeo {X Y : TopCat} (f : X ≃ₜ Y) :
                              X Y

                              Any homeomorphisms induces an isomorphism in Top.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem TopCat.isoOfHomeo_hom {X Y : TopCat} (f : X ≃ₜ Y) :
                                  @[simp]
                                  theorem TopCat.isoOfHomeo_inv {X Y : TopCat} (f : X ≃ₜ Y) :
                                  def TopCat.homeoOfIso {X Y : TopCat} (f : X Y) :
                                  X ≃ₜ Y

                                  Any isomorphism in Top induces a homeomorphism.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem TopCat.homeoOfIso_apply {X Y : TopCat} (f : X Y) (a : X) :
                                      @[simp]
                                      @[simp]
                                      theorem TopCat.of_isoOfHomeo {X Y : TopCat} (f : X ≃ₜ Y) :
                                      @[simp]
                                      theorem TopCat.of_homeoOfIso {X Y : TopCat} (f : X Y) :