Documentation

Mathlib.Topology.Category.TopCat.Adjunctions

Adjunctions regarding the category of topological spaces #

This file shows that the forgetful functor from topological spaces to types has a left and right adjoint, given by TopCat.discrete, resp. TopCat.trivial, the functors which equip a type with the discrete, resp. trivial, topology.

Equipping a type with the discrete topology is left adjoint to the forgetful functor Top ⥤ Type.

Equations
    Instances For
      @[simp]
      theorem TopCat.adj₁_unit :
      adj₁.unit = { app := fun (x : Type u) => id, naturality := adj₁._proof_1 }
      @[simp]
      theorem TopCat.adj₁_counit :
      adj₁.counit = { app := fun (X : TopCat) => ofHom { toFun := id, continuous_toFun := }, naturality := adj₁._proof_3 }

      Equipping a type with the trivial topology is right adjoint to the forgetful functor Top ⥤ Type.

      Equations
        Instances For
          @[simp]
          theorem TopCat.adj₂_unit :
          adj₂.unit = { app := fun (X : TopCat) => ofHom { toFun := id, continuous_toFun := }, naturality := adj₂._proof_2 }
          @[simp]
          theorem TopCat.adj₂_counit :
          adj₂.counit = { app := fun (x : Type u) => id, naturality := adj₂._proof_3 }