Documentation

Mathlib.Topology.Sober

Sober spaces #

A quasi-sober space is a topological space where every irreducible closed subset has a generic point. A sober space is a quasi-sober space where every irreducible closed subset has a unique generic point. This is if and only if the space is T0, and thus sober spaces can be stated via [QuasiSober α] [T0Space α].

Main definition #

def IsGenericPoint {α : Type u_1} [TopologicalSpace α] (x : α) (S : Set α) :

x is a generic point of S if S is the closure of x.

Stacks Tag 004X ((1))

Equations
    Instances For
      theorem isGenericPoint_def {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} :
      theorem IsGenericPoint.def {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
      theorem isGenericPoint_iff_specializes {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} :
      IsGenericPoint x S ∀ (y : α), x y y S
      theorem IsGenericPoint.specializes_iff_mem {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} (h : IsGenericPoint x S) :
      x y y S
      theorem IsGenericPoint.specializes {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} (h : IsGenericPoint x S) (h' : y S) :
      x y
      theorem IsGenericPoint.mem {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
      x S
      theorem IsGenericPoint.isClosed {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
      theorem IsGenericPoint.isIrreducible {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
      theorem IsGenericPoint.inseparable {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} (h : IsGenericPoint x S) (h' : IsGenericPoint y S) :
      theorem IsGenericPoint.eq {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} [T0Space α] (h : IsGenericPoint x S) (h' : IsGenericPoint y S) :
      x = y

      In a T₀ space, each set has at most one generic point.

      theorem IsGenericPoint.mem_open_set_iff {α : Type u_1} [TopologicalSpace α] {x : α} {S U : Set α} (h : IsGenericPoint x S) (hU : IsOpen U) :
      x U (S U).Nonempty
      theorem IsGenericPoint.disjoint_iff {α : Type u_1} [TopologicalSpace α] {x : α} {S U : Set α} (h : IsGenericPoint x S) (hU : IsOpen U) :
      Disjoint S U xU
      theorem IsGenericPoint.mem_closed_set_iff {α : Type u_1} [TopologicalSpace α] {x : α} {S Z : Set α} (h : IsGenericPoint x S) (hZ : IsClosed Z) :
      x Z S Z
      theorem IsGenericPoint.image {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {x : α} {S : Set α} (h : IsGenericPoint x S) {f : αβ} (hf : Continuous f) :
      IsGenericPoint (f x) (closure (f '' S))
      theorem isGenericPoint_iff_forall_closed {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (hS : IsClosed S) (hxS : x S) :
      IsGenericPoint x S ∀ (Z : Set α), IsClosed Zx ZS Z
      class QuasiSober (α : Type u_3) [TopologicalSpace α] :

      A space is sober if every irreducible closed subset has a generic point.

      Instances
        theorem quasiSober_iff (α : Type u_3) [TopologicalSpace α] :
        QuasiSober α ∀ {S : Set α}, IsIrreducible SIsClosed S∃ (x : α), IsGenericPoint x S
        noncomputable def IsIrreducible.genericPoint {α : Type u_1} [TopologicalSpace α] [QuasiSober α] {S : Set α} (hS : IsIrreducible S) :
        α

        A generic point of the closure of an irreducible space.

        Equations
          Instances For
            noncomputable def genericPoint (α : Type u_1) [TopologicalSpace α] [QuasiSober α] [IrreducibleSpace α] :
            α

            A generic point of a sober irreducible space.

            Equations
              Instances For

                The closed irreducible subsets of a sober space bijects with the points of the space.

                Equations
                  Instances For
                    theorem Topology.IsClosedEmbedding.quasiSober {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsClosedEmbedding f) [QuasiSober β] :
                    theorem Topology.IsOpenEmbedding.quasiSober {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsOpenEmbedding f) [QuasiSober β] :
                    theorem TopologicalSpace.IsOpenCover.quasiSober_iff_forall {α : Type u_1} [TopologicalSpace α] {ι : Type u_3} {U : ιOpens α} (hU : IsOpenCover U) :
                    QuasiSober α ∀ (i : ι), QuasiSober (U i)
                    theorem TopologicalSpace.IsOpenCover.quasiSober {α : Type u_1} [TopologicalSpace α] {ι : Type u_3} {U : ιOpens α} (hU : IsOpenCover U) [∀ (i : ι), QuasiSober (U i)] :
                    theorem quasiSober_of_open_cover {α : Type u_1} [TopologicalSpace α] (S : Set (Set α)) (hS : ∀ (s : S), IsOpen s) [∀ (s : S), QuasiSober s] (hS' : ⋃₀ S = ) :

                    A space is quasi-sober if it can be covered by open quasi-sober subsets.

                    @[instance 100]
                    instance T2Space.quasiSober {α : Type u_1} [TopologicalSpace α] [T2Space α] :

                    Any Hausdorff space is a quasi-sober space because any irreducible set is a singleton.

                    def genericPoints (α : Type u_1) [TopologicalSpace α] :
                    Set α

                    The set of generic points of irreducible components.

                    Equations
                      Instances For

                        The irreducible component of a generic point

                        Equations
                          Instances For
                            noncomputable def genericPoints.ofComponent {α : Type u_1} [TopologicalSpace α] [QuasiSober α] (x : (irreducibleComponents α)) :

                            The generic point of an irreducible component.

                            Equations
                              Instances For
                                noncomputable def genericPoints.equiv {α : Type u_1} [TopologicalSpace α] [T0Space α] [QuasiSober α] :

                                In a sober space, the generic points corresponds bijectively to irreducible components

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem genericPoints.equiv_apply {α : Type u_1} [TopologicalSpace α] [T0Space α] [QuasiSober α] (x : (genericPoints α)) :