Miscellaneous #
This is currently not very sorted. PRs welcome!
A product space α × β is equivalent to the space Π i : Fin 2, γ i, where
γ = Fin.cons α (Fin.cons β finZeroElim). See also piFinTwoEquiv and
finTwoArrowEquiv.
Equations
Instances For
@[simp]
theorem
prodEquivPiFinTwo_apply
(α β : Type u)
:
⇑(prodEquivPiFinTwo α β) = fun (p : Fin.cons α (Fin.cons β finZeroElim) 0 × Fin.cons α (Fin.cons β finZeroElim) 1) =>
Fin.cons p.1 (Fin.cons p.2 finZeroElim)
@[simp]
theorem
prodEquivPiFinTwo_symm_apply
(α β : Type u)
:
⇑(prodEquivPiFinTwo α β).symm = fun (f : (i : Fin 2) → Fin.cons α (Fin.cons β finZeroElim) i) => (f 0, f 1)
The space of functions Fin 2 → α is equivalent to α × α. See also piFinTwoEquiv and
prodEquivPiFinTwo.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
The equiv version of Fin.predAbove_zero.
@[simp]
@[simp]
An embedding e : Fin (n+1) ↪ ι corresponds to an embedding f : Fin n ↪ ι (corresponding
the last n coordinates of e) together with a value not taken by f (corresponding to e 0).
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
The equivalence induced by a ↦ (a / n, a % n) for nonzero n.
See Int.ediv_emod_unique for a similar propositional statement.
Equations
Instances For
@[simp]
@[deprecated Fin.subsingleton_zero (since := "2025-06-03")]
@[deprecated Fin.subsingleton_one (since := "2025-06-03")]
@[simp]
theorem
Fin.succFunEquiv_symm_apply
(α : Type u_1)
(n : ℕ)
(a✝ : (Fin n → α) × α)
(a✝¹ : Fin (n + 1))
:
(succFunEquiv α n).symm a✝ a✝¹ = append ((Equiv.prodCongrRight fun (x : Fin n → α) => Equiv.funUnique (Fin 1) α).symm a✝).1
((Equiv.prodCongrRight fun (x : Fin n → α) => Equiv.funUnique (Fin 1) α).symm a✝).2 a✝¹