The category of commutative algebras over a commutative ring #
This file defines the bundled category CommAlgCat
of commutative algebras over a fixed commutative
ring R
along with the forgetful functors to CommRingCat
and AlgCat
.
Equations
@[reducible, inline]
The object in the category of R-algebras associated to a type equipped with the appropriate
typeclasses. This is the preferred way to construct a term of CommAlgCat R
.
Equations
Instances For
theorem
CommAlgCat.Hom.ext
{R : Type u}
{inst✝ : CommRing R}
{A B : CommAlgCat R}
{x y : A.Hom B}
(hom' : x.hom' = y.hom')
:
Equations
instance
CommAlgCat.instConcreteCategoryAlgHomCarrier
{R : Type u}
[CommRing R]
:
CategoryTheory.ConcreteCategory (CommAlgCat R) fun (x1 x2 : CommAlgCat R) => ↑x1 →ₐ[R] ↑x2
Equations
Use the ConcreteCategory.hom
projection for @[simps]
lemmas.
Equations
Instances For
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
@[simp]
theorem
CommAlgCat.hom_comp
{R : Type u}
[CommRing R]
{A B C : CommAlgCat R}
(f : A ⟶ B)
(g : B ⟶ C)
:
theorem
CommAlgCat.comp_apply
{R : Type u}
[CommRing R]
{A B C : CommAlgCat R}
(f : A ⟶ B)
(g : B ⟶ C)
(a : ↑A)
:
theorem
CommAlgCat.hom_ext
{R : Type u}
[CommRing R]
{A B : CommAlgCat R}
{f g : A ⟶ B}
(hf : Hom.hom f = Hom.hom g)
:
@[simp]
theorem
CommAlgCat.inv_hom_apply
{R : Type u}
[CommRing R]
{A B : CommAlgCat R}
(e : A ≅ B)
(x : ↑A)
:
theorem
CommAlgCat.hom_inv_apply
{R : Type u}
[CommRing R]
{A B : CommAlgCat R}
(e : A ≅ B)
(x : ↑B)
:
Equations
instance
CommAlgCat.instCommRingObjForget
{R : Type u}
[CommRing R]
{A : CommAlgCat R}
:
CommRing ((CategoryTheory.forget (CommAlgCat R)).obj A)
Equations
instance
CommAlgCat.instAlgebraObjForget
{R : Type u}
[CommRing R]
{A : CommAlgCat R}
:
Algebra R ((CategoryTheory.forget (CommAlgCat R)).obj A)
Equations
Equations
Equations
@[simp]
@[simp]
theorem
CommAlgCat.forget₂_commRingCat_map
{R : Type u}
[CommRing R]
{A B : CommAlgCat R}
(f : A ⟶ B)
:
@[simp]
@[simp]
@[simp]
theorem
CommAlgCat.ofIso_symm_apply
{R : Type u}
[CommRing R]
{A B : CommAlgCat R}
(i : A ≅ B)
(a : ↑B)
:
@[simp]
theorem
CommAlgCat.ofIso_apply
{R : Type u}
[CommRing R]
{A B : CommAlgCat R}
(i : A ≅ B)
(a : ↑A)
:
Universe lift functor for commutative algebras.
Equations
Instances For
The universe lift functor for commutative algebras is fully faithful.
Equations
Instances For
The category of commutative algebras over a commutative ring R
is the same as commutative
rings under R
.
Equations
Instances For
@[simp]
@[simp]
theorem
commAlgCatEquivUnder_unitIso
(R : CommRingCat)
:
(commAlgCatEquivUnder R).unitIso = CategoryTheory.NatIso.ofComponents
(fun (A : CommAlgCat ↑R) =>
CommAlgCat.isoMk
(let __RingEquiv := RingEquiv.refl ↑A;
{ toEquiv := __RingEquiv.toEquiv, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ }))
⋯
@[simp]
@[simp]
theorem
commAlgCatEquivUnder_inverse_map
(R : CommRingCat)
{A B : CategoryTheory.Under R}
(f : A ⟶ B)
:
@[simp]
theorem
commAlgCatEquivUnder_counitIso
(R : CommRingCat)
:
(commAlgCatEquivUnder R).counitIso = CategoryTheory.Iso.refl
({ obj := fun (A : CategoryTheory.Under R) => CommAlgCat.of ↑R ↑A.right,
map := fun {A B : CategoryTheory.Under R} (f : A ⟶ B) => CommAlgCat.ofHom (CommRingCat.toAlgHom f),
map_id := ⋯, map_comp := ⋯ }.comp
{ obj := fun (A : CommAlgCat ↑R) => R.mkUnder ↑A,
map := fun {A B : CommAlgCat ↑R} (f : A ⟶ B) => (CommAlgCat.Hom.hom f).toUnder, map_id := ⋯, map_comp := ⋯ })
@[simp]