Documentation

Mathlib.Algebra.Category.CommAlgCat.Monoidal

The cocartesian monoidal category structure on commutative R-algebras #

This file provides the cocartesian-monoidal category structure on CommAlgCat R constructed explicitly using the tensor product.

The explicit cocone with tensor products as the fibered coproduct in CommAlgCat.

Equations
    Instances For
      @[simp]
      theorem CommAlgCat.binaryCofan_pt {R : Type u} [CommRing R] (A B : CommAlgCat R) :
      (A.binaryCofan B).pt = of R (TensorProduct R A B)

      Verify that the pushout cocone is indeed the colimit.

      Equations
        Instances For

          The initial object of CommAlgCat R is R as an algebra over itself.

          Equations
            Instances For
              @[simp]
              theorem CommAlgCat.braiding_hom_hom {R : Type u} [CommRing R] (A B : CommAlgCat R) :
              Hom.hom (β_ A B).hom = (Algebra.TensorProduct.comm R A B)
              @[simp]
              theorem CommAlgCat.braiding_inv_hom {R : Type u} [CommRing R] (A B : CommAlgCat R) :
              Hom.hom (β_ A B).inv = (Algebra.TensorProduct.comm R B A)
              theorem Quiver.Hom.unop_inj_iff {C : Type u₁} [Quiver C] {X Y : Cᵒᵖ} {a₁ a₂ : X Y} :
              a₁ = a₂ a₁.unop = a₂.unop