Documentation

Mathlib.Algebra.Category.Grp.Biproducts

The category of abelian groups has finite biproducts #

Construct limit data for a binary product in AddCommGrp, using AddCommGrp.of (G × H).

Equations
    Instances For
      noncomputable def AddCommGrp.biprodIsoProd (G H : AddCommGrp) :
      G H of (G × H)

      We verify that the biproduct in AddCommGrp is isomorphic to the cartesian product of the underlying types:

      Equations
        Instances For
          def AddCommGrp.HasLimit.lift {J : Type w} (f : JAddCommGrp) (s : CategoryTheory.Limits.Fan f) :
          s.pt of ((j : J) → (f j))

          The map from an arbitrary cone over an indexed family of abelian groups to the cartesian product of those groups.

          Equations
            Instances For
              @[simp]
              theorem AddCommGrp.HasLimit.lift_hom_apply {J : Type w} (f : JAddCommGrp) (s : CategoryTheory.Limits.Fan f) (x : s.1) (j : J) :

              Construct limit data for a product in AddCommGrp, using AddCommGrp.of (∀ j, F.obj j).

              Equations
                Instances For
                  @[simp]
                  theorem AddCommGrp.HasLimit.productLimitCone_cone_pt_coe {J : Type w} (f : JAddCommGrp) :
                  (productLimitCone f).cone.pt = ((j : J) → (f j))
                  noncomputable def AddCommGrp.biproductIsoPi {J : Type} [Finite J] (f : JAddCommGrp) :
                  f of ((j : J) → (f j))

                  We verify that the biproduct we've just defined is isomorphic to the AddCommGrp structure on the dependent function type.

                  Equations
                    Instances For