The category of Hopf algebras over a commutative ring #
We introduce the bundled category HopfAlgCat
of Hopf algebras over a fixed commutative ring
R
along with the forgetful functor to BialgCat
.
This file mimics Mathlib/LinearAlgebra/QuadraticForm/QuadraticModuleCat.lean
.
The category of R
-Hopf algebras.
- carrier : Type v
The underlying type.
- instHopfAlgebra : HopfAlgebra R self.carrier
Instances For
Equations
@[reducible, inline]
The object in the category of R
-Hopf algebras associated to an R
-Hopf algebra.
Equations
Instances For
@[simp]
@[simp]
theorem
HopfAlgCat.Hom.ext
{R : Type u}
{inst✝ : CommRing R}
{V W : HopfAlgCat R}
{x y : V.Hom W}
(toBialgHom' : x.toBialgHom' = y.toBialgHom')
:
theorem
HopfAlgCat.Hom.ext_iff
{R : Type u}
{inst✝ : CommRing R}
{V W : HopfAlgCat R}
{x y : V.Hom W}
:
Equations
instance
HopfAlgCat.concreteCategory
{R : Type u}
[CommRing R]
:
CategoryTheory.ConcreteCategory (HopfAlgCat R) fun (x1 x2 : HopfAlgCat R) => x1.carrier →ₐc[R] x2.carrier
Equations
@[reducible, inline]
Turn a morphism in HopfAlgCat
back into a BialgHom
.
Equations
Instances For
@[reducible, inline]
abbrev
HopfAlgCat.ofHom
{R : Type u}
[CommRing R]
{X Y : Type v}
[Ring X]
[Ring Y]
[HopfAlgebra R X]
[HopfAlgebra R Y]
(f : X →ₐc[R] Y)
:
Typecheck a BialgHom
as a morphism in HopfAlgCat R
.
Equations
Instances For
theorem
HopfAlgCat.hom_ext
{R : Type u}
[CommRing R]
{X Y : HopfAlgCat R}
(f g : X ⟶ Y)
(h : Hom.toBialgHom f = Hom.toBialgHom g)
:
@[simp]
theorem
HopfAlgCat.toBialgHom_comp
{R : Type u}
[CommRing R]
{X Y Z : HopfAlgCat R}
(f : X ⟶ Y)
(g : Y ⟶ Z)
:
@[simp]
Equations
@[simp]
@[simp]
theorem
HopfAlgCat.forget₂_bialgebra_map
{R : Type u}
[CommRing R]
(X Y : HopfAlgCat R)
(f : X ⟶ Y)
:
def
BialgEquiv.toHopfAlgIso
{R : Type u}
[CommRing R]
{X Y : Type v}
[Ring X]
[Ring Y]
[HopfAlgebra R X]
[HopfAlgebra R Y]
(e : X ≃ₐc[R] Y)
:
Build an isomorphism in the category HopfAlgCat R
from a
BialgEquiv
.
Equations
Instances For
@[simp]
theorem
BialgEquiv.toHopfAlgIso_inv
{R : Type u}
[CommRing R]
{X Y : Type v}
[Ring X]
[Ring Y]
[HopfAlgebra R X]
[HopfAlgebra R Y]
(e : X ≃ₐc[R] Y)
:
@[simp]
theorem
BialgEquiv.toHopfAlgIso_hom
{R : Type u}
[CommRing R]
{X Y : Type v}
[Ring X]
[Ring Y]
[HopfAlgebra R X]
[HopfAlgebra R Y]
(e : X ≃ₐc[R] Y)
:
@[simp]
theorem
BialgEquiv.toHopfAlgIso_refl
{R : Type u}
[CommRing R]
{X : Type v}
[Ring X]
[HopfAlgebra R X]
:
@[simp]
theorem
BialgEquiv.toHopfAlgIso_symm
{R : Type u}
[CommRing R]
{X Y : Type v}
[Ring X]
[Ring Y]
[HopfAlgebra R X]
[HopfAlgebra R Y]
(e : X ≃ₐc[R] Y)
:
@[simp]
theorem
BialgEquiv.toHopfAlgIso_trans
{R : Type u}
[CommRing R]
{X Y Z : Type v}
[Ring X]
[Ring Y]
[Ring Z]
[HopfAlgebra R X]
[HopfAlgebra R Y]
[HopfAlgebra R Z]
(e : X ≃ₐc[R] Y)
(f : Y ≃ₐc[R] Z)
:
Build a BialgEquiv
from an isomorphism in the category
HopfAlgCat R
.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Iso.toHopfAlgEquiv_toBialgHom
{R : Type u}
[CommRing R]
{X Y : HopfAlgCat R}
(i : X ≅ Y)
:
@[simp]
@[simp]
theorem
CategoryTheory.Iso.toHopfAlgEquiv_symm
{R : Type u}
[CommRing R]
{X Y : HopfAlgCat R}
(e : X ≅ Y)
:
@[simp]
theorem
CategoryTheory.Iso.toHopfAlgEquiv_trans
{R : Type u}
[CommRing R]
{X Y Z : HopfAlgCat R}
(e : X ≅ Y)
(f : Y ≅ Z)
: