Documentation

Mathlib.Algebra.Category.HopfAlgCat.Basic

The category of Hopf algebras over a commutative ring #

We introduce the bundled category HopfAlgCat of Hopf algebras over a fixed commutative ring R along with the forgetful functor to BialgCat.

This file mimics Mathlib/LinearAlgebra/QuadraticForm/QuadraticModuleCat.lean.

structure HopfAlgCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of R-Hopf algebras.

Instances For
    @[reducible, inline]
    abbrev HopfAlgCat.of (R : Type u) [CommRing R] (X : Type v) [Ring X] [HopfAlgebra R X] :

    The object in the category of R-Hopf algebras associated to an R-Hopf algebra.

    Equations
      Instances For
        structure HopfAlgCat.Hom {R : Type u} [CommRing R] (V W : HopfAlgCat R) :

        A type alias for BialgHom to avoid confusion between the categorical and algebraic spellings of composition.

        Instances For
          theorem HopfAlgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : HopfAlgCat R} {x y : V.Hom W} (toBialgHom' : x.toBialgHom' = y.toBialgHom') :
          x = y
          theorem HopfAlgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {V W : HopfAlgCat R} {x y : V.Hom W} :
          @[reducible, inline]
          abbrev HopfAlgCat.Hom.toBialgHom {R : Type u} [CommRing R] {X Y : HopfAlgCat R} (f : X.Hom Y) :

          Turn a morphism in HopfAlgCat back into a BialgHom.

          Equations
            Instances For
              @[reducible, inline]
              abbrev HopfAlgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (f : X →ₐc[R] Y) :
              of R X of R Y

              Typecheck a BialgHom as a morphism in HopfAlgCat R.

              Equations
                Instances For
                  theorem HopfAlgCat.hom_ext {R : Type u} [CommRing R] {X Y : HopfAlgCat R} (f g : X Y) (h : Hom.toBialgHom f = Hom.toBialgHom g) :
                  f = g
                  theorem HopfAlgCat.hom_ext_iff {R : Type u} [CommRing R] {X Y : HopfAlgCat R} {f g : X Y} :
                  def BialgEquiv.toHopfAlgIso {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (e : X ≃ₐc[R] Y) :

                  Build an isomorphism in the category HopfAlgCat R from a BialgEquiv.

                  Equations
                    Instances For
                      @[simp]
                      theorem BialgEquiv.toHopfAlgIso_inv {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (e : X ≃ₐc[R] Y) :
                      @[simp]
                      theorem BialgEquiv.toHopfAlgIso_hom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (e : X ≃ₐc[R] Y) :
                      @[simp]
                      theorem BialgEquiv.toHopfAlgIso_symm {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (e : X ≃ₐc[R] Y) :
                      @[simp]
                      theorem BialgEquiv.toHopfAlgIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [Ring X] [Ring Y] [Ring Z] [HopfAlgebra R X] [HopfAlgebra R Y] [HopfAlgebra R Z] (e : X ≃ₐc[R] Y) (f : Y ≃ₐc[R] Z) :

                      Build a BialgEquiv from an isomorphism in the category HopfAlgCat R.

                      Equations
                        Instances For