Documentation

Mathlib.Algebra.Category.BialgCat.Basic

The category of bialgebras over a commutative ring #

We introduce the bundled category BialgCat of bialgebras over a fixed commutative ring R along with the forgetful functors to CoalgCat and AlgCat.

This file mimics Mathlib/LinearAlgebra/QuadraticForm/QuadraticModuleCat.lean.

structure BialgCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of R-bialgebras.

Instances For
    Equations
      def BialgCat.of (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :

      The object in the category of R-bialgebras associated to an R-bialgebra.

      Equations
        Instances For
          @[simp]
          theorem BialgCat.of_instRing (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :
          (of R X).instRing = inst✝
          @[simp]
          theorem BialgCat.of_carrier (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :
          (of R X).carrier = X
          @[simp]
          theorem BialgCat.of_instBialgebra (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :
          (of R X).instBialgebra = inst✝
          structure BialgCat.Hom {R : Type u} [CommRing R] (V W : BialgCat R) :

          A type alias for BialgHom to avoid confusion between the categorical and algebraic spellings of composition.

          Instances For
            theorem BialgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : BialgCat R} {x y : V.Hom W} (toBialgHom' : x.toBialgHom' = y.toBialgHom') :
            x = y
            theorem BialgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {V W : BialgCat R} {x y : V.Hom W} :
            @[reducible, inline]
            abbrev BialgCat.Hom.toBialgHom {R : Type u} [CommRing R] {X Y : BialgCat R} (f : X.Hom Y) :

            Turn a morphism in BialgCat back into a BialgHom.

            Equations
              Instances For
                @[reducible, inline]
                abbrev BialgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (f : X →ₐc[R] Y) :
                of R X of R Y

                Typecheck a BialgHom as a morphism in BialgCat R.

                Equations
                  Instances For
                    theorem BialgCat.hom_ext {R : Type u} [CommRing R] {X Y : BialgCat R} (f g : X Y) (h : Hom.toBialgHom f = Hom.toBialgHom g) :
                    f = g
                    theorem BialgCat.hom_ext_iff {R : Type u} [CommRing R] {X Y : BialgCat R} {f g : X Y} :
                    def BialgEquiv.toBialgIso {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :

                    Build an isomorphism in the category BialgCat R from a BialgEquiv.

                    Equations
                      Instances For
                        @[simp]
                        theorem BialgEquiv.toBialgIso_hom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :
                        @[simp]
                        theorem BialgEquiv.toBialgIso_inv {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :
                        @[simp]
                        theorem BialgEquiv.toBialgIso_symm {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :
                        @[simp]
                        theorem BialgEquiv.toBialgIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [Ring X] [Ring Y] [Ring Z] [Bialgebra R X] [Bialgebra R Y] [Bialgebra R Z] (e : X ≃ₐc[R] Y) (f : Y ≃ₐc[R] Z) :

                        Build a BialgEquiv from an isomorphism in the category BialgCat R.

                        Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.Iso.toBialgEquiv_trans {R : Type u} [CommRing R] {X Y Z : BialgCat R} (e : X Y) (f : Y Z) :