The category of bialgebras over a commutative ring #
We introduce the bundled category BialgCat
of bialgebras over a fixed commutative ring R
along with the forgetful functors to CoalgCat
and AlgCat
.
This file mimics Mathlib/LinearAlgebra/QuadraticForm/QuadraticModuleCat.lean
.
theorem
BialgCat.Hom.ext
{R : Type u}
{inst✝ : CommRing R}
{V W : BialgCat R}
{x y : V.Hom W}
(toBialgHom' : x.toBialgHom' = y.toBialgHom')
:
Equations
theorem
BialgCat.hom_ext
{R : Type u}
[CommRing R]
{X Y : BialgCat R}
(f g : X ⟶ Y)
(h : Hom.toBialgHom f = Hom.toBialgHom g)
:
@[simp]
Equations
instance
BialgCat.hasForgetToAlgebra
{R : Type u}
[CommRing R]
:
CategoryTheory.HasForget₂ (BialgCat R) (AlgCat R)
Equations
@[simp]
Equations
@[simp]
@[simp]
@[simp]
theorem
CategoryTheory.Iso.toBialgEquiv_toBialgHom
{R : Type u}
[CommRing R]
{X Y : BialgCat R}
(i : X ≅ Y)
:
@[simp]
@[simp]
theorem
CategoryTheory.Iso.toBialgEquiv_symm
{R : Type u}
[CommRing R]
{X Y : BialgCat R}
(e : X ≅ Y)
: