Documentation

Mathlib.Algebra.Category.ModuleCat.Presheaf.Pullback

Pullback of presheaves of modules #

Let F : C ⥤ D be a functor, R : Dᵒᵖ ⥤ RingCat and S : Cᵒᵖ ⥤ RingCat be presheaves of rings, and φ : S ⟶ F.op ⋙ R be a morphism of presheaves of rings, we introduce the pullback functor pullback : PresheafOfModules S ⥤ PresheafOfModules R as the left adjoint of pushforward : PresheafOfModules R ⥤ PresheafOfModules S. The existence of this left adjoint functor is obtained under suitable universe assumptions.

The pullback functor PresheafOfModules S ⥤ PresheafOfModules R induced by a morphism of presheaves of rings S ⟶ F.op ⋙ R, defined as the left adjoint functor to the pushforward, when it exists.

Equations
    Instances For

      Given a morphism of presheaves of rings S ⟶ F.op ⋙ R, this is the adjunction between associated pullback and pushforward functors on the categories of presheaves of modules.

      Equations
        Instances For
          @[reducible, inline]

          Given a morphism of presheaves of rings φ : S ⟶ F.op ⋙ R, this is the property that the (partial) left adjoint functor of pushforward φ is defined on a certain object M : PresheafOfModules S.

          Equations
            Instances For
              @[deprecated PresheafOfModules.pullbackObjIsDefined (since := "2025-03-06")]

              Alias of PresheafOfModules.pullbackObjIsDefined.


              Given a morphism of presheaves of rings φ : S ⟶ F.op ⋙ R, this is the property that the (partial) left adjoint functor of pushforward φ is defined on a certain object M : PresheafOfModules S.

              Equations
                Instances For

                  Given a morphism of presheaves of rings φ : S ⟶ F.op ⋙ R, where F : C ⥤ D, S : Cᵒᵖ ⥤ RingCat, R : Dᵒᵖ ⥤ RingCat and X : C, the (partial) left adjoint functor of pushforward φ is defined on the object (free S).obj (yoneda.obj X): this object shall be mapped to (free R).obj (yoneda.obj (F.obj X)).

                  Equations
                    Instances For