Documentation

Mathlib.Algebra.Category.ModuleCat.Topology.Basic

The category TopModuleCat R of topological modules #

We define TopModuleCat R, the category of topological modules, and show that it has all limits and colimits.

We also provide various adjunctions:

Future projects #

Show that the forgetful functor to TopCat preserves filtered colimits.

structure TopModuleCat (R : Type u) [Ring R] [TopologicalSpace R] extends ModuleCat R :
Type (max u (v + 1))

The category of topological modules.

Instances For
    noncomputable instance TopModuleCat.instCoeSortType (R : Type u) [Ring R] [TopologicalSpace R] :
    Equations
      @[reducible, inline]

      Make an object in TopModuleCat R from an unbundled topological module.

      Equations
        Instances For
          structure TopModuleCat.Hom {R : Type u} [Ring R] [TopologicalSpace R] (X Y : TopModuleCat R) :

          Homs in TopModuleCat as one field structures over ContinuousLinearMap.

          Instances For
            @[reducible, inline]
            abbrev TopModuleCat.Hom.hom {R : Type u} [Ring R] [TopologicalSpace R] {X Y : TopModuleCat R} (f : X.Hom Y) :

            Cast a hom in TopModuleCat into a continuous linear map.

            Equations
              Instances For
                @[reducible, inline]

                Construct a hom in TopModuleCat from a continuous linear map.

                Equations
                  Instances For
                    @[simp]
                    theorem TopModuleCat.ofHom_hom (R : Type u) [Ring R] [TopologicalSpace R] {X Y : TopModuleCat R} (f : X.Hom Y) :
                    ofHom f.hom = f
                    @[simp]
                    theorem TopModuleCat.hom_comp (R : Type u) [Ring R] [TopologicalSpace R] {X Y Z : TopModuleCat R} (f : X Y) (g : Y Z) :

                    Use the ConcreteCategory.hom projection for @[simps] lemmas.

                    Equations
                      Instances For
                        def TopModuleCat.ofIso {R : Type u} [Ring R] [TopologicalSpace R] {X Y : TopModuleCat R} (e : X.toModuleCat ≃L[R] Y.toModuleCat) :
                        X Y

                        Construct an iso in TopModuleCat from a continuous linear equiv.

                        Equations
                          Instances For

                            Cast an iso in TopModuleCat into a continuous linear equiv.

                            Equations
                              Instances For
                                @[simp]
                                theorem TopModuleCat.hom_zero (R : Type u) [Ring R] [TopologicalSpace R] {M₁ M₂ : TopModuleCat R} :
                                @[simp]
                                theorem TopModuleCat.hom_zero_apply (R : Type u) [Ring R] [TopologicalSpace R] {M₁ M₂ : TopModuleCat R} (m : M₁.toModuleCat) :
                                (Hom.hom 0) m = 0
                                @[simp]
                                theorem TopModuleCat.hom_add (R : Type u) [Ring R] [TopologicalSpace R] {M₁ M₂ : TopModuleCat R} (φ₁ φ₂ : M₁ M₂) :
                                Hom.hom (φ₁ + φ₂) = Hom.hom φ₁ + Hom.hom φ₂
                                @[simp]
                                theorem TopModuleCat.hom_neg (R : Type u) [Ring R] [TopologicalSpace R] {M₁ M₂ : TopModuleCat R} (φ : M₁ M₂) :
                                @[simp]
                                theorem TopModuleCat.hom_sub (R : Type u) [Ring R] [TopologicalSpace R] {M₁ M₂ : TopModuleCat R} (φ₁ φ₂ : M₁ M₂) :
                                Hom.hom (φ₁ - φ₂) = Hom.hom φ₁ - Hom.hom φ₂
                                @[simp]
                                theorem TopModuleCat.hom_nsmul (R : Type u) [Ring R] [TopologicalSpace R] {M₁ M₂ : TopModuleCat R} (n : ) (φ : M₁ M₂) :
                                Hom.hom (n φ) = n Hom.hom φ
                                @[simp]
                                theorem TopModuleCat.hom_zsmul (R : Type u) [Ring R] [TopologicalSpace R] {M₁ M₂ : TopModuleCat R} (n : ) (φ : M₁ M₂) :
                                Hom.hom (n φ) = n Hom.hom φ
                                instance TopModuleCat.instModuleHom {S : Type u_1} [CommRing S] [TopologicalSpace S] {X Y : TopModuleCat S} :
                                Module S (X Y)
                                Equations
                                  @[simp]
                                  theorem TopModuleCat.hom_smul {S : Type u_1} [CommRing S] [TopologicalSpace S] {M₁ M₂ : TopModuleCat S} (s : S) (φ : M₁ M₂) :
                                  Hom.hom (s φ) = s Hom.hom φ
                                  def TopModuleCat.coinduced {R : Type u} [Ring R] [TopologicalSpace R] {M : ModuleCat R} {I : Type u_1} {X : ITopModuleCat R} (f : (i : I) → (X i).toModuleCat M) :

                                  The coinduced topology on M from a family of continuous linear maps into M, which is the finest topology that makes it into a topological module and makes every map continuous.

                                  Equations
                                    Instances For
                                      def TopModuleCat.toCoinduced {R : Type u} [Ring R] [TopologicalSpace R] {M : ModuleCat R} {I : Type u_1} {X : ITopModuleCat R} (f : (i : I) → (X i).toModuleCat M) (i : I) :

                                      The maps into the coinduced topology as homs in TopModuleCat R.

                                      Equations
                                        Instances For

                                          The cocone of topological modules associated to a cocone over the underlying modules, where the cocone point is given the coinduced topology. This is colimiting when the given cocone is.

                                          Equations
                                            Instances For

                                              Given a colimit cocone over the underlying modules, equipping the cocone point with the coinduced topology gives a colimit cocone in TopModuleCat R.

                                              Equations
                                                Instances For
                                                  def TopModuleCat.induced {R : Type u} [Ring R] [TopologicalSpace R] {M : ModuleCat R} {I : Type u_1} {X : ITopModuleCat R} (f : (i : I) → M (X i).toModuleCat) :

                                                  The induced topology on M from a family of continuous linear maps from M, which is the coarsest topology that makes every map continuous.

                                                  Equations
                                                    Instances For
                                                      def TopModuleCat.fromInduced {R : Type u} [Ring R] [TopologicalSpace R] {M : ModuleCat R} {I : Type u_1} {X : ITopModuleCat R} (f : (i : I) → M (X i).toModuleCat) (i : I) :
                                                      induced f X i

                                                      The maps from the induced topology as homs in TopModuleCat R.

                                                      Equations
                                                        Instances For

                                                          The cone of topological modules associated to a cone over the underlying modules, where the cone point is given the induced topology. This is limiting when the given cone is.

                                                          Equations
                                                            Instances For

                                                              Given a limit cone over the underlying modules, equipping the cone point with the induced topology gives a limit cone in TopModuleCat R.

                                                              Equations
                                                                Instances For

                                                                  The functor equipping a module over a topological ring with the finest possible topology making it into a topological module. This is left adjoint to the forgetful functor.

                                                                  Equations
                                                                    Instances For

                                                                      The adjunction between withModuleTopology and the forgetful functor.

                                                                      Equations
                                                                        Instances For

                                                                          The functor equipping a module with the indiscrete topology. This is right adjoint to the forgetful functor.

                                                                          Equations
                                                                            Instances For

                                                                              The adjunction between the forgetful functor and the indiscrete topology functor.

                                                                              Equations
                                                                                Instances For
                                                                                  noncomputable def TopModuleCat.freeObj (R : Type u) [Ring R] [TopologicalSpace R] (X : TopCat) :

                                                                                  The free topological module over a topological space.

                                                                                  Equations
                                                                                    Instances For
                                                                                      theorem TopModuleCat.coe_freeObj (R : Type u) [Ring R] [TopologicalSpace R] (X : TopCat) :
                                                                                      (freeObj R X).toModuleCat = (X →₀ R)
                                                                                      noncomputable def TopModuleCat.freeMap (R : Type u) [Ring R] [TopologicalSpace R] {X Y : TopCat} (f : X Y) :

                                                                                      The free topological module over a topological space is functorial.

                                                                                      Equations
                                                                                        Instances For

                                                                                          The free topological module over a topological space as a functor. This is left adjoint to the forgetful functor.

                                                                                          Equations
                                                                                            Instances For
                                                                                              @[simp]
                                                                                              theorem TopModuleCat.free_obj (R : Type u) [Ring R] [TopologicalSpace R] (X : TopCat) :
                                                                                              (free R).obj X = freeObj R X
                                                                                              @[simp]
                                                                                              theorem TopModuleCat.free_map (R : Type u) [Ring R] [TopologicalSpace R] {X✝ Y✝ : TopCat} (f : X✝ Y✝) :
                                                                                              (free R).map f = freeMap R f

                                                                                              The free-forgetful adjoint for TopModuleCat R.

                                                                                              Equations
                                                                                                Instances For