Documentation

Mathlib.Algebra.Category.ModuleCat.Topology.Homology

TopModuleCat is a CategoryWithHomology #

TopModuleCat R, the category of topological R-modules, is not an abelian category. But since the topology on subquotients is well-defined, we can still talk about homology in this category. See the CategoryWithHomology (TopModuleCat R) instance in this file.

@[reducible, inline]
abbrev TopModuleCat.ker {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) :

Kernel in TopModuleCat R is the kernel of the linear map with the subspace topology.

Equations
    Instances For
      def TopModuleCat.kerι {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) :
      ker φ M

      The inclusion map from the kernel in TopModuleCat R.

      Equations
        Instances For
          @[simp]
          @[simp]
          theorem TopModuleCat.kerι_apply {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) (x : (fun (X : TopModuleCat R) => X.toModuleCat) (ker φ)) :
          @[reducible, inline]
          abbrev TopModuleCat.coker {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) :

          Cokernel in TopModuleCat R is the cokernel of the linear map with the quotient topology.

          Equations
            Instances For
              def TopModuleCat.cokerπ {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) :
              N coker φ

              The projection map to the cokernel in TopModuleCat R.

              Equations
                Instances For
                  @[simp]
                  theorem TopModuleCat.hom_cokerπ {R : Type u} [Ring R] [TopologicalSpace R] {M N : TopModuleCat R} (φ : M N) (x : N.toModuleCat) :