Documentation

Mathlib.Algebra.Homology.Embedding.Extend

The extension of a homological complex by an embedding of complex shapes #

Given an embedding e : Embedding c c' of complex shapes, and K : HomologicalComplex C c, we define K.extend e : HomologicalComplex C c', and this leads to a functor e.extendFunctor C : HomologicalComplex C c ⥤ HomologicalComplex C c'.

This construction first appeared in the Liquid Tensor Experiment.

Auxiliary definition for the X field of HomologicalComplex.extend.

Equations
    Instances For

      The isomorphism X K i ≅ K.X j when i = some j.

      Equations
        Instances For

          The canonical isomorphism X K.op i ≅ Opposite.op (X K i).

          Equations
            Instances For

              Auxiliary definition for the d field of HomologicalComplex.extend.

              Equations
                Instances For

                  Auxiliary definition for HomologicalComplex.extendMap.

                  Equations
                    Instances For

                      Given K : HomologicalComplex C c and e : c.Embedding c', this is the extension of K in HomologicalComplex C c': it is zero in the degrees that are not in the image of e.f.

                      Equations
                        Instances For
                          noncomputable def HomologicalComplex.extendXIso {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c) (e : c.Embedding c') {i' : ι'} {i : ι} (h : e.f i = i') :
                          (K.extend e).X i' K.X i

                          The isomorphism (K.extend e).X i' ≅ K.X i when e.f i = i'.

                          Equations
                            Instances For
                              theorem HomologicalComplex.extend_d_eq {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c) (e : c.Embedding c') {i' j' : ι'} {i j : ι} (hi : e.f i = i') (hj : e.f j = j') :
                              theorem HomologicalComplex.extend_d_from_eq_zero {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c) (e : c.Embedding c') (i' j' : ι') (i : ι) (hi : e.f i = i') (hi' : ¬c.Rel i (c.next i)) :
                              (K.extend e).d i' j' = 0
                              theorem HomologicalComplex.extend_d_to_eq_zero {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c) (e : c.Embedding c') (i' j' : ι') (j : ι) (hj : e.f j = j') (hj' : ¬c.Rel (c.prev j) j) :
                              (K.extend e).d i' j' = 0

                              Given an embedding e : c.Embedding c' of complexes shapes, this is the morphism K.extend e ⟶ L.extend e induced by a morphism K ⟶ L in HomologicalComplex C c.

                              Equations
                                Instances For
                                  theorem HomologicalComplex.extendMap_f_eq_zero {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c} (φ : K L) (e : c.Embedding c') (i' : ι') (hi' : ∀ (i : ι), e.f i i') :
                                  (extendMap φ e).f i' = 0

                                  The canonical isomorphism K.op.extend e.op ≅ (K.extend e).op.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem HomologicalComplex.extendMap_add {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] {K L : HomologicalComplex C c} (φ φ' : K L) (e : c.Embedding c') :
                                      extendMap (φ + φ') e = extendMap φ e + extendMap φ' e

                                      Given an embedding e : c.Embedding c' of complex shapes, this is the functor HomologicalComplex C c ⥤ HomologicalComplex C c' which extend complexes along e: the extended complexes are zero in the degrees that are not in the image of e.f.

                                      Equations
                                        Instances For